File size: 13,789 Bytes
fb77716 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783170960940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7831709609d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783170960a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783170960af0>", "_build": "<function ActorCriticPolicy._build at 0x783170960b80>", "forward": "<function ActorCriticPolicy.forward at 0x783170960c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783170960ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783170960d30>", "_predict": "<function ActorCriticPolicy._predict at 0x783170960dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783170960e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783170960ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783170960f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78317090ff00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712642649786261216, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNhJ72Fk9K5MlGsO3PqJTbWWt05lMPHugAAgD8AAIA/M1WYvT0qNrkmzI65cxGstNJ97Dp72aY4AACAPwAAgD+zkwk9e5KMuoU/BrvWj7A19elTO1ZLI7UAAIA/AACAP1rf3j3Sk9i7wi2CvDsWgbw/j/G7+gpevQAAgD8AAIA/ky01PjO3Nz+KEUy8VAw4voUbsz3fcYY7AAAAAAAAAACzbMS9ccAcuwyyITzgsJI8+7ouvPLbfD0AAAAAAACAP2asqz2FXvA8XcB/vibjDL5pamq9aVmgOgAAAAAAAAAAAIBpvSmQL7qjxFC7/y7HNjFbo7rm0Da2AACAPwAAgD/Nkw097BiquyvJ3b3bDMm9RuwLPfCRpD4AAIA/AACAP9otl70UHom6o6/bOk8IAjYh1B07ipX+uQAAgD8AAIA/M9JqvVLo07kAodw6fM/GNcu3IbuAyP65AACAPwAAgD+GiQ4+PTJaPo+JAr5q/Uq+c+BRvZaLNL0AAAAAAAAAAMDdqL32jH+64kJKu7G2UThIaMq6kxfeOQAAgD8AAIA/2iCrvXv2nbr57ZY6s3CONch93LnWHa65AACAPwAAgD8AYzi9PWqBP//eNr19kYC+QZbBvN9tNbwAAAAAAAAAADA7pz4O4Ng+nqiovS2SZ77NGEc9Y+33PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF8rlK9PDYSMAWyUTegDjAF0lEdAt1t20/nnuHV9lChoBkdAXxDm5lOGkGgHTegDaAhHQLdcFvW6K+B1fZQoaAZHQF0ZpWV/tppoB03oA2gIR0C3XJoe9zwMdX2UKGgGR0BbOsMAmzBzaAdN6ANoCEdAt161EjPfK3V9lChoBkdAYal9roGIK2gHTegDaAhHQLde5uAZsKt1fZQoaAZHQF/QnBtUGV1oB03oA2gIR0C3X5gH7gsLdX2UKGgGR8AG7VjI7vG7aAdNUgFoCEdAt2JLM4cWCXV9lChoBkdAW6F/e+Eh7mgHTegDaAhHQLdimQ0XP7h1fZQoaAZHQGWc7SZ0CBBoB03oA2gIR0C3Ysab4Ju3dX2UKGgGR0BctlGPPszEaAdN6ANoCEdAt2MDWI42j3V9lChoBkdAYZWsmv4dqGgHTegDaAhHQLdjCrmQr+Z1fZQoaAZHQGLbOu7pV0doB03oA2gIR0C3Y2Nd7fHhdX2UKGgGR0Brko2qDK5kaAdNywFoCEdAt2OZpztCzHV9lChoBkdAW4PM6ij+JmgHTegDaAhHQLdksCDmKZV1fZQoaAZHQGb1yO7xusNoB03oA2gIR0C3ZRRWgezVdX2UKGgGR0Btqe8TSLIgaAdNRAJoCEdAt2xhOXVslHV9lChoBkdAY42dTYNAkmgHTegDaAhHQLdsaNJvo/11fZQoaAZHQGYL27Wd3B5oB03oA2gIR0C3b+3r+o9+dX2UKGgGR0Bk6uGATZg5aAdN6ANoCEdAt3AgQd0aInV9lChoBkdAXmgeHSF492gHTegDaAhHQLdwYwfQrtp1fZQoaAZHQGLwOAZsKsxoB03oA2gIR0C3dAlLi++NdX2UKGgGR0Bgi0jxCpm3aAdN6ANoCEdAt3TZAzHjqHV9lChoBkdAaAxtRekYXWgHTUwCaAhHQLd2msQNCqp1fZQoaAZHQF1nZ+QU5+9oB03oA2gIR0C3dxyY5T60dX2UKGgGR0BbnLk8zQ/paAdN6ANoCEdAt3dq/RE4N3V9lChoBkdAYifG4I8hcWgHTegDaAhHQLd3lDsMRYl1fZQoaAZHQGQlu7g88tBoB03oA2gIR0C3d8jiS7oTdX2UKGgGR0BXtpsoDxLCaAdN6ANoCEdAt3fP2USqVHV9lChoBkdAWFIE+xGDtmgHTegDaAhHQLd4LMtK7I11fZQoaAZHQGXAdFF2FFloB03oA2gIR0C3eHAuEmICdX2UKGgGR0Bl07ILgGbDaAdN6ANoCEdAt3nNWuHN5nV9lChoBkdAZuzXjlxOtWgHTegDaAhHQLd6Lu1F6Rh1fZQoaAZHwELKxM36yjZoB0v3aAhHQLd6ZEdNnGt1fZQoaAZHQGP5oWYWtU5oB03oA2gIR0C3gQV7tzCDdX2UKGgGR0BhMufseGO/aAdN6ANoCEdAt4Qknw5NoXV9lChoBkdAYrkoOx0MgGgHTegDaAhHQLeEahqj8DV1fZQoaAZHQF0YKaXrt3RoB03oA2gIR0C3hL/Fm4AkdX2UKGgGR0BgDR/3FkxzaAdN6ANoCEdAt4iILQXyiHV9lChoBkdAZgyfeUILPWgHTegDaAhHQLeJT7Jnxrl1fZQoaAZHQGWTeF+NLlFoB03oA2gIR0C3i53e7+UAdX2UKGgGR0BhGfZXdTHbaAdN6ANoCEdAt4vqF10T13V9lChoBkdAW9e3solUqGgHTegDaAhHQLeMFmyxA0N1fZQoaAZHQGI5mF8G9pRoB03oA2gIR0C3jFAI+nqFdX2UKGgGR0BgsBYJVsDXaAdN6ANoCEdAt4xXO7g883V9lChoBkdAZOw9vjwQUmgHTegDaAhHQLeMr3Ehq0t1fZQoaAZHQF+ikj5bhWJoB03oA2gIR0C3jOVSflIVdX2UKGgGR0Bl5W3c580DaAdN6ANoCEdAt4319NN8E3V9lChoBkdAZIhjdYW+G2gHTegDaAhHQLeOTr7wazh1fZQoaAZHQGBy1+Zw4sFoB03oA2gIR0C3jojXarWAdX2UKGgGR8ARxwIdELH/aAdL62gIR0C3lDHPRiPRdX2UKGgGR0AyXjC53C9AaAdNHgFoCEdAt5U6HdoFmnV9lChoBkdAXbd2C/XXiGgHTegDaAhHQLeVlyYG+sZ1fZQoaAZHQDl//WDpTuRoB00vAWgIR0C3ltNTUAktdX2UKGgGR0Be37VjI7vHaAdN6ANoCEdAt5gNsEaESXV9lChoBkdAXL70TURWcWgHTegDaAhHQLeYNzLOiWV1fZQoaAZHQFu72AoXsPdoB03oA2gIR0C3mG6pYLb6dX2UKGgGR0A7QfE4vN/waAdNDAFoCEdAt5jyjbi6x3V9lChoBkdAXSCLLpzLfWgHTegDaAhHQLebwPkaMrF1fZQoaAZHQFt168g6ltVoB03oA2gIR0C3nMp+hGpddX2UKGgGR0BepHQ2MsH0aAdN6ANoCEdAt59NczImxHV9lChoBkdAZAfEa2nbZmgHTegDaAhHQLefnE+gUUR1fZQoaAZHQGC0U6gdwNtoB03oA2gIR0C3n8oF/x2CdX2UKGgGR0BjM7HGS6lMaAdN6ANoCEdAt6APZRKpUHV9lChoBkdAZeZQiRnvlWgHTegDaAhHQLegraScLBt1fZQoaAZHQEBl0yP+4spoB00PAWgIR0C3oWonv2GqdX2UKGgGR0Bmpuhh6SkkaAdN6ANoCEdAt6J3OjZcs3V9lChoBkdAYlpjurp7kWgHTegDaAhHQLeit68g6lt1fZQoaAZHQGAKRptaY/poB03oA2gIR0C3o5Odsi0OdX2UKGgGR0BgNqo60Y0maAdN6ANoCEdAt6oOhdt2tHV9lChoBkdAYBK3AmAskWgHTegDaAhHQLerkYdQwbl1fZQoaAZHQFxCvBacI7hoB03oA2gIR0C3rQ4y9EkTdX2UKGgGR0BZywb+98JEaAdN6ANoCEdAt60/lcQiA3V9lChoBkdAXdBlFtsN2GgHTegDaAhHQLetg/u9eyB1fZQoaAZHQGVTjQAuIyloB03oA2gIR0C3riD4xk/bdX2UKGgGR0BgvpiZv1lHaAdN6ANoCEdAt7EznQpnYnV9lChoBkdAYbGWRigCfmgHTegDaAhHQLe0zxX4j8l1fZQoaAZHQFp1/Ho5ggJoB03oA2gIR0C3tT3mzSkTdX2UKGgGR0BcqyXlbNbDaAdN6ANoCEdAt7WCg6EJ0HV9lChoBkdAWg/dVNpM6GgHTegDaAhHQLe12gMMI/t1fZQoaAZHQGVHx5C4SYhoB03oA2gIR0C3toQh8pkPdX2UKGgGR0BfG25xzaK2aAdN6ANoCEdAt7c7ATIvJ3V9lChoBkdAYS3d/rjYI2gHTegDaAhHQLe4JE0zj3p1fZQoaAZHQGKIqH446wNoB03oA2gIR0C3uGL2lEZ0dX2UKGgGR0Bgon05EMLGaAdN6ANoCEdAt7k87QswtnV9lChoBkdAW9aSkj5bhWgHTegDaAhHQLe/K+3Ytg91fZQoaAZHQGa9A+hXbM5oB03oA2gIR0C3wSnvUjLTdX2UKGgGR0BZN0/SpiqiaAdN6ANoCEdAt8LR5OafBnV9lChoBkdAZAOBClabF2gHTegDaAhHQLfDBNRWLgp1fZQoaAZHQFXpB8QZn+RoB03oA2gIR0C3w0ZeVs1sdX2UKGgGR0Bij25Fw1iwaAdN6ANoCEdAt8PRbLU1AXV9lChoBkdAY0TWOIZZS2gHTegDaAhHQLfG0NhmXgN1fZQoaAZHQFuPtxdY4hloB03oA2gIR0C3ykW5Yoy9dX2UKGgGR0BX5ffbblBAaAdN6ANoCEdAt8qiKJl8PXV9lChoBkdAY13s3yZrpWgHTegDaAhHQLfK2di2Dxt1fZQoaAZHQGB/mYrrgO1oB03oA2gIR0C3yyjYZl4DdX2UKGgGR0BkIh+tr9EUaAdN6ANoCEdAt8voHMUypXV9lChoBkdAYYmOtGNJe2gHTegDaAhHQLfM5GHpKSR1fZQoaAZHQGSAKCQLeANoB03oA2gIR0C3zg8ibDuSdX2UKGgGR0Bi4YXGff4zaAdN6ANoCEdAt85S74BV/HV9lChoBkdAY0bQ7cO9WmgHTegDaAhHQLfPNEkB0ZF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |