metadata
language: vi
tags:
- vi
- vietnamese
- gpt2
- text-generation
- lm
- nlp
datasets:
- oscar
widget:
- text: hôm nay tôi đi chơi
GPT-2
Pretrained model on Vietnamese language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page.
How to use the model
from transformers import GPT2Tokenizer, AutoModelForCausalLM
tokenizer = GPT2Tokenizer.from_pretrained("NlpHUST/gpt2-vietnamese")
model = AutoModelForCausalLM.from_pretrained("NlpHUST/gpt2-vietnamese")
Model architecture
A 12-layer, 768-hidden-size transformer-based language model.
Training
The model was trained on Vietnamese Oscar dataset (32 GB) to optimize a traditional language modelling objective on v3-8 TPU for around 6 days. It reaches around 13.4 perplexity on a chosen validation set from Oscar.
GPT-2 Fineturning
The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before the tokenization). The loss here is that of causal language modeling.
The script here .
python run_clm.py \
--model_name_or_path NlpHUST/gpt2-vietnamese \
--dataset_name wikitext \
--dataset_config_name wikitext-2-raw-v1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--do_train \
--do_eval \
--output_dir /tmp/test-clm