File size: 20,892 Bytes
f881e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import os
import time
import math
import pickle
import random
import json
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt

# We use Hugging Face’s transformers only for pretrained weight loading and tokenizer.
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from dataclasses import dataclass

# ----------------------------
# Helper: ALiBi slopes computation
# ----------------------------
def get_alibi_slopes(n_head):
    """Compute ALiBi slopes for each head.
    This implementation follows the approach used in several ALiBi implementations.
    """
    def get_slopes_power_of_2(n):
        start = 2 ** (-2 ** -(math.log2(n) - 3))
        ratio = start
        return [start * (ratio ** i) for i in range(n)]
    if math.log2(n_head).is_integer():
        slopes = get_slopes_power_of_2(n_head)
    else:
        closest_power_of_2 = 2 ** math.floor(math.log2(n_head))
        slopes = get_slopes_power_of_2(closest_power_of_2)
        extra_slopes = get_slopes_power_of_2(2 * closest_power_of_2)[0::2][: n_head - closest_power_of_2]
        slopes.extend(extra_slopes)
    return torch.tensor(slopes, dtype=torch.float32)

# ----------------------------
# Model Components
# ----------------------------

class LayerNorm(nn.Module):
    """LayerNorm with an optional bias."""
    def __init__(self, ndim, bias: bool):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.use_rope = config.use_rope
        self.rope_base = config.rope_base
        # Existing APE support.
        self.use_ape = getattr(config, 'use_ape', False)
        # New: ALiBi support.
        self.use_alibi = getattr(config, 'use_alibi', False)
        if self.use_alibi and self.use_ape:
            raise ValueError("Cannot use both ALiBi and APE simultaneously.")
        # For APE, learn a parameter beta.
        if self.use_ape:
            self.beta = nn.Parameter(torch.tensor(1.0))
        # Use Flash Attention if available (but disable when APE is enabled).
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if (not self.flash) or self.use_ape:
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                        .view(1, 1, config.block_size, config.block_size))
        
    def forward(self, x, return_attn_entropy=False, aggregate_heads=False):
        """
        Args:
            x: Input tensor [B, T, C]
            return_attn_entropy (bool): If True, return attention entropy.
            aggregate_heads (bool): If True, average entropy across heads.
        Returns:
            y: Output tensor [B, T, C] or (y, entropy)
        """
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        head_dim = C // self.n_head
        
        # Reshape to [B, n_head, T, head_dim]
        q = q.view(B, T, self.n_head, head_dim).transpose(1, 2)
        k = k.view(B, T, self.n_head, head_dim).transpose(1, 2)
        v = v.view(B, T, self.n_head, head_dim).transpose(1, 2)
        
        # Optionally, apply RoPE if enabled.
        if self.use_rope:
            hs = head_dim
            d = hs // 2
            if self.use_ape:
                theta = 1.0 / (self.rope_base ** (2 * torch.arange(0, d, dtype=x.dtype, device=x.device) / hs))
            else:
                theta = 1.0 / (self.rope_base ** (2 * torch.arange(0, d, dtype=x.dtype, device=x.device) / hs))
            t_pos = torch.arange(T, device=x.device, dtype=x.dtype)
            freqs = torch.outer(t_pos, theta)
            freqs_cos = torch.cos(freqs).unsqueeze(0).unsqueeze(0)
            freqs_sin = torch.sin(freqs).unsqueeze(0).unsqueeze(0)
            def apply_rope(tensor, cos, sin):
                tensor = tensor.reshape(*tensor.shape[:-1], -1, 2)
                x0 = tensor[..., 0]
                x1 = tensor[..., 1]
                x0_rot = x0 * cos - x1 * sin
                x1_rot = x0 * sin + x1 * cos
                return torch.stack([x0_rot, x1_rot], dim=-1).flatten(start_dim=-2)
            q = apply_rope(q, freqs_cos, freqs_sin)
            k = apply_rope(k, freqs_cos, freqs_sin)
        
        # Compute scaled dot-product attention scores.
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(head_dim))
        
        # --- Apply positional biases ---
        if self.use_alibi:
            slopes = get_alibi_slopes(self.n_head).to(x.device)  # shape: (n_head,)
            rel_positions = torch.arange(T, device=x.device).unsqueeze(0) - torch.arange(T, device=x.device).unsqueeze(1)
            alibi_bias = slopes.view(1, self.n_head, 1, 1) * rel_positions.view(1, 1, T, T)
            att = att - alibi_bias
        elif self.use_ape:
            pos_ids = torch.arange(T, device=x.device)
            rel_dist = pos_ids.unsqueeze(0) - pos_ids.unsqueeze(1)
            abs_rel = rel_dist.abs().float()
            temp_matrix = 1.0 / (1.0 + abs_rel)
            bias_matrix = - self.beta * torch.log(1.0 + abs_rel)
            temp_matrix = temp_matrix.unsqueeze(0).unsqueeze(0)
            bias_matrix = bias_matrix.unsqueeze(0).unsqueeze(0)
            att = temp_matrix * att + bias_matrix
        
        p_att = F.softmax(att, dim=-1)
        entropy = -(p_att * torch.log(p_att + 1e-9)).sum(dim=-1)  # [B, n_head, T, T]
        
        if self.flash and not self.use_ape:
            y = torch.nn.functional.scaled_dot_product_attention(
                q, k, v,
                attn_mask=None,
                dropout_p=self.dropout if self.training else 0,
                is_causal=True
            )
        else:
            if T > self.bias.size(-1):
                bias = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
            else:
                bias = self.bias[:, :, :T, :T]
            att = att.masked_fill(bias == 0, float('-inf'))
            p_att = F.softmax(att, dim=-1)
            entropy = -(p_att * torch.log(p_att + 1e-9)).sum(dim=-1)
            att = self.attn_dropout(p_att)
            y = att @ v  # [B, n_head, T, head_dim]
        
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        
        if return_attn_entropy:
            if aggregate_heads:
                entropy = entropy.mean(dim=1)  # [B, T, T]
            return y, entropy
        else:
            return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc   = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu   = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)
    def forward(self, x, return_attn_entropy=False, aggregate_heads=False):
        if return_attn_entropy:
            attn_output, entropy = self.attn(self.ln_1(x), return_attn_entropy=True, aggregate_heads=aggregate_heads)
            x = x + attn_output
            x = x + self.mlp(self.ln_2(x))
            return x, entropy
        else:
            attn_output = self.attn(self.ln_1(x), return_attn_entropy=False)
            x = x + attn_output
            x = x + self.mlp(self.ln_2(x))
            return x

@dataclass
class GPTConfig:
    block_size: int = 128
    vocab_size: int = 50304  # For GPT-2
    n_layer: int = 6
    n_head: int = 6
    n_embd: int = 384
    dropout: float = 0.0
    bias: bool = True
    use_rope: bool = True
    rope_base: float = 10000.0
    use_ape: bool = False
    lambda_temp: float = 0.1
    use_alibi: bool = False

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None and config.block_size is not None
        self.config = config
        # If using ALiBi, disable RoPE.
        self.use_rope = config.use_rope and not config.use_alibi
        print(f"Using RoPE in GPT init: {self.use_rope}")
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = None if self.use_rope else nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = LayerNorm(config.n_embd, bias=config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
        print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
    def get_num_params(self, non_embedding=True):
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding and (not self.use_rope) and (self.transformer.wpe is not None):
            n_params -= self.transformer.wpe.weight.numel()
        return n_params
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    def forward(self, idx, targets=None, return_attn_entropy=False, aggregate_heads=False):
        device = idx.device
        b, t = idx.size()
        pos = torch.arange(0, t, dtype=torch.long, device=device)
        tok_emb = self.transformer.wte(idx)
        if self.use_rope or self.config.use_alibi:
            x = self.transformer.drop(tok_emb)
        else:
            pos_emb = self.transformer.wpe(pos) if self.transformer.wpe is not None else 0
            x = self.transformer.drop(tok_emb + pos_emb)
        attn_entropies = []
        for block in self.transformer.h:
            if return_attn_entropy:
                x, entropy = block(x, return_attn_entropy=True, aggregate_heads=aggregate_heads)
                attn_entropies.append(entropy)
            else:
                x = block(x)
        x = self.transformer.ln_f(x)
        if targets is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            logits = self.lm_head(x[:, [-1], :])
            loss = None
        if return_attn_entropy:
            return logits, loss, attn_entropies
        else:
            return logits, loss
    @torch.no_grad()
    def generate_and_compute_perplexity(self, prompt, ground_truth, temperature=1.0, return_attn_entropy=False, aggregate_heads=False):
        if return_attn_entropy:
            _, _, attn_entropies = self(prompt, return_attn_entropy=True, aggregate_heads=aggregate_heads)
            per_layer_avgs = [entropy.mean().item() for entropy in attn_entropies]
            avg_entropy = np.mean(per_layer_avgs)
        else:
            avg_entropy = None
        total_loss = 0.0
        total_tokens = 0
        prompt_length = prompt.size(1)
        num_target_tokens = ground_truth.size(1) - prompt_length
        idx = prompt.clone()
        for i in range(num_target_tokens):
            logits, _ = self(idx)
            logits = logits[:, -1, :] / temperature
            target = ground_truth[:, prompt_length + i]
            loss = F.cross_entropy(logits, target, reduction='sum')
            total_loss += loss.item()
            total_tokens += target.numel()
            target_token = target.unsqueeze(1)
            idx = torch.cat((idx, target_token), dim=1)
        avg_neg_log_likelihood = total_loss / total_tokens if total_tokens > 0 else float('inf')
        perplexity = math.exp(avg_neg_log_likelihood)
        return idx, perplexity, avg_entropy
    @torch.no_grad()
    def generate_until_end(self, idx, temperature=1.0, top_k=None, max_new_tokens=1000):
        for i in range(max_new_tokens):
            idx_cond = idx
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
            if idx_next.item() == 50256:
                break
        return idx

# ----------------------------
# Utility Functions for Training & Evaluation
# ----------------------------

# Data Loader Functions
train_data_path = "/data1/home/nitinvetcha/Topics in AI/Streamlined/COLM2025/train_tinystories.bin"
val_data_path   = "/data1/home/nitinvetcha/Topics in AI/Streamlined/COLM2025/val_tinystories.bin"
def get_batch(split):
    data_path = train_data_path if split == 'train' else val_data_path
    data = np.memmap(data_path, dtype=np.uint16, mode='r')
    total_tokens = len(data)
    max_ix = max(1, total_tokens - gptconf.block_size)
    ix = torch.randint(0, max_ix, (batch_size,))
    X = torch.stack([torch.from_numpy(data[i:i+gptconf.block_size].astype(np.int64)) for i in ix])
    Y = torch.stack([torch.from_numpy(data[i+1:i+1+gptconf.block_size].astype(np.int64)) for i in ix])
    return X.to(device), Y.to(device)

def evaluate_prompt_perplexity(model, token_file, prompt_length, num_trials, generation_params, device):
    tokens = np.fromfile(token_file, dtype=np.uint16)
    total_tokens = len(tokens)
    perplexities = []
    entropy_trials = []
    max_new_tokens = generation_params.get("max_new_tokens", 50)
    total_length = prompt_length + max_new_tokens
    for trial in range(num_trials):
        start_idx = random.randint(0, total_tokens - total_length)
        sequence_tokens = tokens[start_idx : start_idx + total_length]
        prompt_tokens = sequence_tokens[:prompt_length]
        ground_truth_tokens = sequence_tokens
        prompt_tensor = torch.tensor(prompt_tokens, dtype=torch.long).unsqueeze(0).to(device)
        ground_truth_tensor = torch.tensor(ground_truth_tokens, dtype=torch.long).unsqueeze(0).to(device)
        _, ppl, trial_entropy = model.generate_and_compute_perplexity(
            prompt_tensor, ground_truth_tensor,
            temperature=generation_params.get("temperature", 1.0),
            return_attn_entropy=True, aggregate_heads=True
        )
        perplexities.append(ppl)
        entropy_trials.append(trial_entropy)
        print(f"Trial {trial+1}/{num_trials} for prompt length {prompt_length}: Perplexity = {ppl:.2f}, Avg Entropy = {trial_entropy:.4f}")
    avg_ppl = np.mean(perplexities)
    avg_entropy = np.mean(entropy_trials)
    print(f"Prompt Length {prompt_length} - Avg Perplexity: {avg_ppl:.2f}, Avg Attention Entropy: {avg_entropy:.4f}\n")
    return avg_ppl, avg_entropy

# ----------------------------
# Training Loop
# ----------------------------
# Training hyperparameters
batch_size = 12
max_iters = 25001
save_interval = 5000
learning_rate = 6e-4
weight_decay = 1e-1
grad_clip = 1.0
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(1337)

# Model configuration: adjust these flags as needed.
model_args = dict(
    n_layer=6,
    n_head=6,
    n_embd=384,
    block_size=64,  # You can change this as needed.
    bias=False,
    use_rope=True,
    use_ape=True,    # Set to True if you want APE.
    use_alibi=False, # Set to True to use ALiBi.
    rope_base=10000.0,
    vocab_size=50304,
    dropout=0.0
)
gptconf = GPTConfig(**model_args)
model = GPT(gptconf).to(device)
model.train()

optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
iter_num = 0
start_time = time.time()
training_losses = []
validation_losses = []
save_iters = []

# Build a flag string for naming: e.g. "rope_ape" or "alibi" etc.
flag_parts = []
if gptconf.use_rope:
    flag_parts.append("rope")
if gptconf.use_ape:
    flag_parts.append("ape")
if gptconf.use_alibi:
    flag_parts.append("alibi")
flag_str = "_".join(flag_parts) if flag_parts else "none"
weight_dir = f"weights_{flag_str}_{gptconf.block_size}"
os.makedirs(weight_dir, exist_ok=True)

while iter_num < max_iters:
    X_train, Y_train = get_batch('train')
    optimizer.zero_grad()
    logits, loss_train = model(X_train, Y_train)
    loss_train.backward()
    if grad_clip > 0:
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
    optimizer.step()
    training_losses.append(loss_train.item())
    
    model.eval()
    X_val, Y_val = get_batch('val')
    with torch.no_grad():
        logits_val, loss_val = model(X_val, Y_val)
    validation_losses.append(loss_val.item())
    model.train()
    
    if iter_num % 100 == 0:
        elapsed = time.time() - start_time
        print(f"Iter {iter_num:5d}: train loss = {loss_train.item():.4f}, val loss = {loss_val.item():.4f}, time/iter = {elapsed/(iter_num+1):.4f}s")
    
    if iter_num > 0 and iter_num % save_interval == 0:
        save_iters.append(iter_num)
        ckpt = {
            'iter_num': iter_num,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'training_losses': training_losses,
            'validation_losses': validation_losses,
            'save_iters': save_iters,
        }
        ckpt_path = os.path.join(weight_dir, f"ckpt_{iter_num}.pt")
        torch.save(ckpt, ckpt_path)
        print(f"Checkpoint saved to {ckpt_path}")
    
    iter_num += 1

print("Training complete.")

plt.figure(figsize=(10, 6))
plt.plot(range(len(training_losses)), training_losses, label="Training Loss")
plt.plot(range(len(validation_losses)), validation_losses, label="Validation Loss", alpha=0.7)
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("Training and Validation Loss per Iteration")
plt.legend()
plt.grid(True)
plt.show()

# ----------------------------
# Perplexity & Entropy Evaluation
# ----------------------------

token_file = val_data_path  # Use validation data for evaluation.
prompt_lengths = [64, 128, 256, 512, 1024, 2048, 4096, 8192]
num_trials = 5
generation_params = {"temperature": 1.0, "max_new_tokens": 50}

avg_perplexities = []
avg_entropies = []

for pl in prompt_lengths:
    print(f"Evaluating for prompt length: {pl}")
    avg_ppl, avg_entropy = evaluate_prompt_perplexity(model, token_file, pl, num_trials, generation_params, device)
    avg_perplexities.append(avg_ppl)
    avg_entropies.append(avg_entropy)

results = {
    "prompt_lengths": prompt_lengths,
    "avg_perplexities": avg_perplexities,
    "avg_entropies": avg_entropies
}
results_filename = f"results_{flag_str}_{gptconf.block_size}.json"
with open(results_filename, "w") as f:
    json.dump(results, f)
print(f"Results saved to {results_filename}")

plt.figure(figsize=(8, 6))
plt.plot(prompt_lengths, avg_perplexities, marker='o')
plt.xlabel("Prompt Length")
plt.ylabel("Avg Generated Perplexity")
plt.title("Avg Generated Perplexity vs Prompt Length")
plt.grid(True)
plt.xscale('log')
plt.savefig(f"avg_generated_perplexity_{flag_str}_{gptconf.block_size}.png")
plt.show()

plt.figure(figsize=(8, 6))
plt.plot(prompt_lengths, avg_entropies, marker='o', color='red')
plt.xlabel("Prompt Length")
plt.ylabel("Avg Attention Entropy")
plt.title("Avg Attention Entropy vs Prompt Length\n(Averaged over Layers)")
plt.grid(True)
plt.xscale('log')
plt.savefig(f"avg_attention_entropy_{flag_str}_{gptconf.block_size}.png")
plt.show()