NiloofarMomeni's picture
End of training
4a67c84 verified
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8581829692940804

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5627
  • Accuracy: 0.8582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4173 1.0 7108 0.5416 0.8343
0.235 2.0 14216 0.4663 0.8251
0.1549 3.0 21324 0.5940 0.8325
0.2558 4.0 28432 0.6608 0.8531
0.2991 5.0 35540 0.9088 0.8305
0.4773 6.0 42648 0.9120 0.8390
0.5235 7.0 49756 0.9285 0.8455
0.0004 8.0 56864 1.0259 0.8492
0.1918 9.0 63972 1.2874 0.8411
0.0002 10.0 71080 1.1114 0.8476
0.0001 11.0 78188 1.4835 0.8393
0.0013 12.0 85296 1.3846 0.8541
0.0001 13.0 92404 1.3622 0.8507
0.0909 14.0 99512 1.4672 0.8487
0.0001 15.0 106620 1.4243 0.8571
0.0 16.0 113728 1.5627 0.8582
0.0 17.0 120836 1.8146 0.8531
0.0 18.0 127944 1.8596 0.8550
0.0 19.0 135052 1.9233 0.8574
0.0 20.0 142160 1.9875 0.8569

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2