File size: 11,285 Bytes
8a1d0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff481ae160>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff481ae1f0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff481ae280>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff481ae310>",
        "_build": "<function ActorCriticPolicy._build at 0x7eff481ae3a0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7eff481ae430>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff481ae4c0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7eff481ae550>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff481ae5e0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff481ae670>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff481ae700>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7eff481a8cf0>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAKUc+JHMdz6ZhcoqmOEAjiXTGzohDncz73VDXnL9O+ffH6E607mZ4mEyBNHM0wdv3xjR8hAZc8FevO6OAyOuz8L8KB2SdYgmP6CiThib5xHx5P5CnNawTm/ynd6xtklahF9kjFcqyOei+hBc2VL3uLZ/hqNGNey21lD4Kv2vfg8ZH1zBr2fA74l16dv+0GkOnuF9fB9TqBIqts8piU8p4S6PpcWDKqKl+YIwCbBGRRACamYfQdZ0RMZ9MU9KkQ+h4RLVnTOZvVtuGPqbITxHkziG8LCjb1YqgIIFHX+fSdD52tU940W6t/g1BdQEL3LTVTknL0tCC4+WWCFmbfvJ5TXAzme2EslL8SgkoyC1FOHqZ9fOaSP2lsxzFqYVzjMyV/MqGlnAJEDpcKkTfz1x/S0QA5gsxxCF3NyxBO6mtqYbsRrBbspF8hDxydw5fMRTLlh6C7HKF6AjXojA81ccAv/Zlk4BR7c4XjJ1xfWHpx27wfhAX72SZCh2UXX8QG/xe3Y8kxCvHwdnJV5lRxt9BB64jCspsVJxSFG/9yarRMrWKb6qO4eEHGgUkeAYQFVb/9aiE+b4S/SIw4zkZBY4JIOQiADWDDw1sCDzfCS6rsJuLW3gcWuaCAS5zQl9PZd7fGI21aSQXZcx4l9kv4ua2QShwmuxzMEfb2VU243IXv80j3yrCD7e7isfkzjYFQkveOCzXVIyzWRPCTUcmqtYTf7xPvJL8+EaBM/kvQopk8MT4i2UQtE2xAZO1sMHNpOTfzTLZ8OngVBftpaUZ1+nBG50JXiC/F7fbFzAjih/hpgI0YBUM5HCGn69NG5O9E4tl7cFRQAJbj9llIEKZyX0QS36WWAURcL3sXl+jDqIohV2kYYSU3ra/sPIc5SHYeST4zyFLCfttU7hBlgNOWAJL2mLOHo+FdHhDFFbODUdSCai2mOdYApp7Q892YimL6Ho+p5Qkluxeh3aH+t2ciX6/ODTzeX+LF/PMwR2PBz6s2VloesChZUVygN6HaKJBRr5uA43CX522dc6G0ixfl4PGtovvbAKiM0s5mMHkw+m81AK5W2xxF4LzOyckTA3OsTxgXDu4H0ccNspoGGfeOz4ciNRAqeLuZi5WLfI0gxNi33TlHqa25bANW8LyypAUgvPMLcTXelSWszUK2nVN9H9Mj9WU/hMyvIQiORm+rFYAt+t8ViVUgEMAuMpSk+qHYhYYdXH5vPJnOE3kgBfH4zCFYozBQWQHk8N2QyP4vfrvY6w2Msa89/1PYZcE0nsiJ1KCHnNuSA8XheLPOkqLKqN18pvzru/RfprgfrsjwvY6/T/1tVJWAw9JlG4NgT7pxbisDOT8mYyhdvK6JXPgGtNDIWFW4oZ/hXz87X3vHdZeeSzf9+cGznapE4KWdvZVGhO8NiwYg7oM+uOHNNwHtX+ZUROulK1pud7J7USxIclu77Anub//VDyQAorAEoZMS7jJ8pMdRvWlTRNqE4D4Qcftv34p3B+ZGj1Il7f4aw8qs0oGu+WpcUz3OniS8KK8XaUC3YSwOtwkHc7Oc853OT7Q5/5QG9/l6979F1Zh8zWPjzjwiBZJl5Cl1TMDLnAp/XYA0E2PSZXk2sy1+jM2znAgdHAZEqCbjH1KMtqzR0onFQrCx3gOYJYo9xo7XFIRiCkquNJ/LiL5GRnjKQPiCk307pA9JUIRxamIE317aWM21jtmaowZ6N4btFazhCPfiI0KeIJfkmEKDA6uGNuN4gVHjpskZGJgM7uUeKTOHamODaZZGSBLlmDy458jlrYyhxIrnjLapZhR48nJXY28KyNJO0i7muG5Ju7HftRHxPe9HCrpYvxR/UndG3+IRaarTZR+/wMiTCy63x21zmhL2abl2tH/5RE9pGYc+p4N2beogaOtjonsUCKSXWxTPZvTFR12YnfhiHy3sd9k4RfpPIrh5pVt1poQmVpSw/nKPDPyH00vtFmHqS3cs3rDg0LC5EDHVO03popeQn2ICAbhaTA1uUxfSQv1Ddo2yoPxxhmvUEgAqgw+frDjfhY6drCgdtXcrBTLz3lh/z2vSOTxGbzhigM/R/EhSQfTTAesskKG7w+f4RH64gm5bL+ldc+buQQMxQ7fn2VExGWdaSZZfjLEJVqCks92K+6pUJOLc5ZSeFU6bCGj6nGtfzJIcPS7TInt6TLOVvanrLvj25HwPsiRDics4nkLFn6dVRl+eeSiUSnnr5gIw0z0ZIa/zAYMkx1UoJc4ZqzQDZ9UaI3yvUcVfPvYJ9PONiOVNpy6o5gHFv1xycjBLjzIaPY7g3dBFZtgYTvf+mdB52cVt2avyVu2sGYlwyeayQsMfQEBDL5tB+RwtNmMagOnmEXDu5EwrtFlhJMw1TW7ZCyfMkGr3k5uKmkgoGvKa21GUYRU266U4Dd4HB5WULG8eRZqfR2zvCdaSEx6Fr6CGDupTuqdKjsa1L7rDeEiYedQbS7mtwygOpx0ChYAzC06WMRvpfIx/RktKfCBVm0RKpkVXDAKI1/4pS8+0UGdJOipOmfXJ0JEqswhH4fAlPfiP6GSM9y6XuT7AZeBkUf6qQpWdtPsHnnWjjgDZT6RY8LIs6pMsAg4v72BtyMJEGAf3qaot4aO465ZjvzjygCnx7FjIsSdvOp5DqWZm/zqOsiiK5/PL871gJ4ot2/Zp6V09Jx6WDcwcq2rDBYrmgl4FdWw1iEiTS2zRUw6yHqbcIUemrHJ3wjJz82foC1guFxSwe0NTFXisGDOZfWuSN70iij2A8gSAZUpOWPrtx7+UlvFPSdsWMP+WlfXAE/NktNrHjldJW9EVX+yFuqihL89s/QSuv7AWXPIKad84yPnMFN9mP/7B3U6bNKRlHwZ0SNA7UFYgUNct3fGwswYEWR3U4Q5+bB++ab6G+49VS0VWbdJdL4aYAzDn67MwudGx5q/E6AxMxZkFoxzZPiGlWiIhZOQibRbgxxCyBmjYSIv83+rAb3tbN8E0atpSj80OSdHJOhggme2UrVu0aWndqFIAu29TlAa5Rc7ak/onQCD9OUbrfP/LImGm0G6q2Jp+Q7tC75Jn+sP9zs3syXDFyKvxQBfjui6NGXAQ15XmsH2du1BRB3EwfznMIm7ptB2YwfqaYmTJ62P1lvpyOXiACqINanixUCv+w1AbYnrDNbcgbcJjb+4QdZwXjLWVdSZHehX5cx4P3OWvjcA4Fxv9qfOfoQYylbdy+EycyEPCdAcJPdMc4jHWyDvFsJ8WBC5z+VvasOfRWHJEal0ypZgFbS2YyWXDLDqG7/jcvr0pga0cSOOzaL1fhgL3jxTAQauhGO9qK40T0OOncgUlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 0,
    "_total_timesteps": 0,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": null,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": null,
    "_last_episode_starts": null,
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 1,
    "ep_info_buffer": null,
    "ep_success_buffer": null,
    "_n_updates": 0,
    "n_steps": 2048,
    "gamma": 0.99,
    "gae_lambda": 0.95,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 10,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}