metadata
license: apache-2.0
tags:
- mlx
base_model: ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2
Nidal890/Mistral-Nemo-12B-ArliAI-RPMax-v1.2-Q4-mlx
The Model Nidal890/Mistral-Nemo-12B-ArliAI-RPMax-v1.2-Q4-mlx was converted to MLX format from ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2 using mlx-lm version 0.19.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Nidal890/Mistral-Nemo-12B-ArliAI-RPMax-v1.2-Q4-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)