metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
A number of factors may impact ESKD growth rates, including mortality
rates for dialysis patients or CKD patients, the aging of the U.S.
population, transplant rates, incidence rates for diseases that cause
kidney failure such as diabetes and hypertension, growth rates of minority
populations with higher than average incidence rates of ESKD.
sentences:
- >-
By how much did the company increase its quarterly cash dividend in
February 2023?
- What factors may impact the growth rates of the ESKD patient population?
- >-
What percentage increase did salaries and related costs experience at
Delta Air Lines from 2022 to 2023?
- source_sentence: HIV product sales increased 6% to $18.2 billion in 2023, compared to 2022.
sentences:
- >-
What were the present values of lease liabilities for operating and
finance leases as of December 31, 2023?
- >-
By what percentage did HIV product sales increase in 2023 compared to
the previous year?
- >-
How is interest income not attributable to the Card Member loan
portfolio primarily represented in financial documents?
- source_sentence: >-
If a violation is found, a broad range of remedies is potentially
available to the Commission and/or CMA, including imposing a fine and/or
the prohibition or restriction of certain business practices.
sentences:
- >-
What are the potential remedies if a violation is found by the European
Commission or the U.K. Competition and Markets Authority in their
investigation of automotive companies?
- >-
By which auditing standards were the consolidated financial statements
of Salesforce, Inc. audited?
- >-
What is the main role of Kroger's Chief Executive Officer in the
company?
- source_sentence: >-
The discussion in Hewlett Packard Enterprise's Form 10-K highlights
factors impacting costs and revenues, including easing supply chain
constraints, foreign exchange pressures, inflationary trends, and recent
tax developments potentially affecting their financial outcomes.
sentences:
- >-
Is the outcome of the investigation into Tesla's waste segregation
practices currently determinable?
- >-
How does Hewlett Packard Enterprise justify the exclusion of
transformation costs from its non-GAAP financial measures?
- >-
In the context of Hewlett Packard Enterprise's recent financial
discussions, what factors are expected to impact their operational costs
and revenue growth moving forward?
- source_sentence: >-
Our Records Management and Data Management service revenue growth is being
negatively impacted by declining activity rates as stored records and
tapes are becoming less active and more archival.
sentences:
- >-
How is Iron Mountain addressing the decline in activity rates in their
Records and Data Management services?
- >-
What services do companies that build fiber-based networks provide in
the Connectivity & Platforms markets?
- >-
What business outcomes is HPE focused on accelerating with its
technological solutions?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7057142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8785714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7057142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17571428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7057142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8785714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8125296344519609
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7804263038548749
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7839408125709297
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8126517351231356
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7807267573696143
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7841188299664252
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8357142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2785714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09071428571428572
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8357142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8086618947757659
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7768820861678005
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7806177775944575
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7980982703041672
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7650045351473919
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7688564414027702
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6542857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7885714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8328571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6542857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26285714285714284
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16657142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6542857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7885714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8328571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7689665884678363
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7325351473922898
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7369423610264151
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
sentences = [
'Our Records Management and Data Management service revenue growth is being negatively impacted by declining activity rates as stored records and tapes are becoming less active and more archival.',
'How is Iron Mountain addressing the decline in activity rates in their Records and Data Management services?',
'What services do companies that build fiber-based networks provide in the Connectivity & Platforms markets?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7057 |
cosine_accuracy@3 |
0.8457 |
cosine_accuracy@5 |
0.8786 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.7057 |
cosine_precision@3 |
0.2819 |
cosine_precision@5 |
0.1757 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.7057 |
cosine_recall@3 |
0.8457 |
cosine_recall@5 |
0.8786 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.8125 |
cosine_mrr@10 |
0.7804 |
cosine_map@100 |
0.7839 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7071 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.7071 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.7071 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.8127 |
cosine_mrr@10 |
0.7807 |
cosine_map@100 |
0.7841 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8357 |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.2786 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0907 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8357 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@10 |
0.8087 |
cosine_mrr@10 |
0.7769 |
cosine_map@100 |
0.7806 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.9014 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.0901 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.9014 |
cosine_ndcg@10 |
0.7981 |
cosine_mrr@10 |
0.765 |
cosine_map@100 |
0.7689 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6543 |
cosine_accuracy@3 |
0.7886 |
cosine_accuracy@5 |
0.8329 |
cosine_accuracy@10 |
0.8829 |
cosine_precision@1 |
0.6543 |
cosine_precision@3 |
0.2629 |
cosine_precision@5 |
0.1666 |
cosine_precision@10 |
0.0883 |
cosine_recall@1 |
0.6543 |
cosine_recall@3 |
0.7886 |
cosine_recall@5 |
0.8329 |
cosine_recall@10 |
0.8829 |
cosine_ndcg@10 |
0.769 |
cosine_mrr@10 |
0.7325 |
cosine_map@100 |
0.7369 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 10 tokens
- mean: 46.55 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.56 tokens
- max: 42 tokens
|
- Samples:
positive |
anchor |
Internationally, Visa Inc.'s commercial payments volume grew by 23% from $407 billion in 2021 to $500 billion in 2022. |
What was the growth rate of Visa Inc.'s commercial payments volume internationally between 2021 and 2022? |
The consolidated financial statements and accompanying notes listed in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included immediately following Part IV hereof. |
Where can one find the consolidated financial statements and accompanying notes in the Annual Report on Form 10-K? |
The additional paid-in capital at the end of 2023 was recorded as $114,519 million. |
What was the amount recorded for additional paid-in capital at the end of 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 80
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 15
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 80
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 15
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8101 |
4 |
- |
0.7066 |
0.7309 |
0.7390 |
0.6462 |
0.7441 |
1.8228 |
9 |
- |
0.7394 |
0.7497 |
0.7630 |
0.6922 |
0.7650 |
2.0253 |
10 |
2.768 |
- |
- |
- |
- |
- |
2.8354 |
14 |
- |
0.7502 |
0.7625 |
0.7767 |
0.7208 |
0.7787 |
3.8481 |
19 |
- |
0.7553 |
0.7714 |
0.7804 |
0.7234 |
0.7802 |
4.0506 |
20 |
1.1294 |
- |
- |
- |
- |
- |
4.8608 |
24 |
- |
0.7577 |
0.7769 |
0.7831 |
0.7327 |
0.7858 |
5.8734 |
29 |
- |
0.7616 |
0.7775 |
0.7832 |
0.7335 |
0.7876 |
6.0759 |
30 |
0.7536 |
- |
- |
- |
- |
- |
6.8861 |
34 |
- |
0.7624 |
0.7788 |
0.7832 |
0.7352 |
0.7882 |
7.8987 |
39 |
- |
0.7665 |
0.7795 |
0.7814 |
0.7359 |
0.7861 |
8.1013 |
40 |
0.5846 |
- |
- |
- |
- |
- |
8.9114 |
44 |
- |
0.7688 |
0.7801 |
0.7828 |
0.7360 |
0.7857 |
9.9241 |
49 |
- |
0.7698 |
0.7804 |
0.7836 |
0.7367 |
0.7840 |
10.1266 |
50 |
0.5187 |
- |
- |
- |
- |
- |
10.9367 |
54 |
- |
0.7692 |
0.7801 |
0.7827 |
0.7383 |
0.7837 |
11.9494 |
59 |
- |
0.7698 |
0.7801 |
0.7834 |
0.7377 |
0.7849 |
12.1519 |
60 |
0.4949 |
0.7689 |
0.7806 |
0.7841 |
0.7369 |
0.7839 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}