metadata
library_name: transformers
tags: []
language:
- en
- es
- ru
- zh
- de
- fr
- th
- ca
- it
- ja
- pl
- eo
- eu
- vi
- fi
- hu
- ar
- nl
- da
- tr
- ko
- he
- id
- cs
- bn
- sv
widget:
- text: |
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
podrias escribir un codigo de ejemplo en Python<|im_end|>
<|im_start|>assistant
Model Card for Model MixLlama
experts:
- source_model: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
positive_prompts:
- ""
- source_model: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_2_V1
positive_prompts:
- ""
- source_model: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_3_V1
positive_prompts:
- ""
base_model: NickyNicky/TinyDolphin-2.8-1.1b_oasst2_chatML_Cluster_1_V1
gate_mode: random # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
GenerationConfig,
TextIteratorStreamer,
)
import torch
new_model= "NickyNicky/Mix_TinyLlama-3x1B_oasst2_chatML_Cluster_3_2_1_V1"
model = AutoModelForCausalLM.from_pretrained(#f'NickyNicky/{new_model}',
new_model,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage= True,
# use_flash_attention_2=False,
)
tokenizer = AutoTokenizer.from_pretrained(new_model,
max_length=2048,
trust_remote_code=True,
use_fast = True,
)
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
tokenizer.padding_side = 'right'
prompt= """<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
escribe una historia de amor.<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer.encode(prompt,
return_tensors="pt",
add_special_tokens=False).cuda()#.to("cuda") # False # True
generation_config = GenerationConfig(
max_new_tokens=700,
temperature=0.5,
top_p=0.9,
top_k=40,
repetition_penalty=1.1, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
outputs = model.generate(
generation_config=generation_config,
input_ids=inputs,)
# tokenizer.decode(outputs[0], skip_special_tokens=False) #True
print(tokenizer.decode(outputs[0], skip_special_tokens=False))