Squid / README.md
runningSnail's picture
update modeling code
6ad73d9
|
raw
history blame
5.83 kB
metadata
license: cc-by-nc-4.0
base_model: Qwen/Qwen2-7B-Instruct
model-index:
  - name: Dolphin
    results: []
tags:
  - RAG
  - on-device language model
  - Retrieval Augmented Generation
inference: false
space: false
spaces: false
language:
  - en

Dolphin: Long Context as a New Modality for on-device RAG

- Nexa Model Hub - ArXiv

nexa-octopus

Overview

Dolphin is a novel approach to accelerate language model inference by treating long context as a new modality, similar to image, audio, and video modalities in vision-language models. This innovative method incorporates a language encoder model to encode context information into embeddings, applying multimodal model concepts to enhance the efficiency of language model inference。 Below are model highlights:

  • 🧠 Context as a distinct modality
  • 🗜️ Language encoder for context compression
  • 🔗 Multimodal techniques applied to language processing
  • ⚡ Optimized for energy efficiency and on-device use
  • 📜 Specialized for long context understanding

Model Architecture

Dolphin employs a decoder-decoder framework with two main components:

  1. A smaller decoder (0.5B parameters) for transforming information from extensive contexts
  2. A larger decoder (7B parameters) for comprehending and generating responses to current queries
  3. The architecture also includes a projector to align embeddings between the text encoder and the main decoder.

Model Architecture

Running the Model

from transformers import AutoTokenizer
from configuration_dolphin import DolphinForCausalLM
import time

AutoConfig.register("dolphin", DolphinConfig)
AutoModelForCausalLM.register(DolphinConfig, DolphinForCausalLM)

MEMORY_SIZE = 32
def inference_instruct(mycontext, device = "cuda:0"):
    import time
    start = time.time()
    generated_token_ids = []
    prompt = " <context>Who and when founded the Shanda group?"
    print("input prompt: " + prompt)
    print("input context: " + mycontext)
    text_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<context>")]
    input_ids = (
        torch.tensor(text_chunks[0] + [-1] * MEMORY_SIZE + text_chunks[1], dtype=torch.long)
        .unsqueeze(0)
        .to(device)
    )
    # print(input_ids)
    # to process the context
    context_tokenized = tokenizer(
        mycontext + "".join([f"[memory_{i}]" for i in range(MEMORY_SIZE)]),
        return_tensors="pt",
    )
    context_tokenized = {k: v.to(device) for k, v in context_tokenized.items()}
    # print(context_tokenized["input_ids"])
    context_token_count = (context_tokenized["input_ids"]).shape[1] - MEMORY_SIZE 
    print("length of context: " + str(context_token_count) + " tokens")
    # We conduct a inference process
    for i in range(context_token_count):
        print(f"\rGenerating token {i+1}/{context_token_count}", end="")
        next_token = (
            model(
                input_ids,
                context_input_ids=context_tokenized["input_ids"],
                context_attention_mask=context_tokenized["attention_mask"],
            )
            .logits[:, -1]
            .argmax(-1)
        )
        if next_token.item() == 151643:
            break
        generated_token_ids.append(next_token.item())
        input_ids = torch.cat([input_ids, next_token.unsqueeze(1)], dim=-1)
    print("\noutput: " + tokenizer.decode(generated_token_ids))
    end = time.time()
    print(f"Elapsed time: {end - start:.2f}s")


# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('NexaAIDev/Dolphin', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('NexaAIDev/Dolphin', trust_remote_code=True)

# Run inference example
mycontext = "Nexa AI is a Cupertino-based company founded in May 2023 that researches and develops models and tools for on-device AI applications. The company is founded by Alex and Zack. The company is known for its Octopus-series models, which rival large-scale language models in capabilities such as function-calling, multimodality, and action-planning, while remaining efficient and compact for edge device deployment. Nexa AI's mission is to advance on-device AI in collaboration with the global developer community. To this end, the company has created an on-device model hub for users to find, share, and collaborate on open-source AI models optimized for edge devices, as well as an SDK for developers to run and deploy AI models locally"
inference_instruct(mycontext, "who founded Nexa AI?")
inference_instruct(mycontext, "what is the mission of Nexa AI?")
inference_instruct(mycontext, "what is the performance of Octopus V2 and V3?")
inference_instruct(mycontext, "when is Nexa AI founded?") 

Training Process

Dolphin's training involves three stages:

  1. Restoration Training: Reconstructing original context from compressed embeddings
  2. Continual Training: Generating context continuations from partial compressed contexts
  3. Instruction Fine-tuning: Generating responses to queries given compressed contexts

This multi-stage approach progressively enhances the model's ability to handle long contexts and generate appropriate responses.

Citation

If you use Dolphin in your research, please cite our paper:

@article{dolphin2024,
  title={Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models},
  author={[Author Names]},
  journal={arXiv preprint arXiv:[paper_id]},
  year={2024}
}

Contact

For questions or feedback, please contact us