|
--- |
|
license: apache-2.0 |
|
base_model: NekoFi/portrait_cosu_exp4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: portrait_cosu_exp5 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9583333333333334 |
|
- name: Precision |
|
type: precision |
|
value: 0.9581730769230768 |
|
- name: Recall |
|
type: recall |
|
value: 0.9583333333333334 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9580274686242009 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# portrait_cosu_exp5 |
|
|
|
This model is a fine-tuned version of [NekoFi/portrait_cosu_exp4](https://huggingface.co/NekoFi/portrait_cosu_exp4) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1603 |
|
- Accuracy: 0.9583 |
|
- Precision: 0.9582 |
|
- Recall: 0.9583 |
|
- F1: 0.9580 |
|
- Confusion Matrix: [[50, 1], [2, 19]] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Confusion Matrix | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------------:| |
|
| 0.3966 | 0.9756 | 10 | 0.3024 | 0.8611 | 0.8695 | 0.8611 | 0.8498 | [[50, 1], [9, 12]] | |
|
| 0.3486 | 1.9512 | 20 | 0.3286 | 0.8333 | 0.8458 | 0.8333 | 0.8147 | [[50, 1], [11, 10]] | |
|
| 0.2347 | 2.9268 | 30 | 0.1769 | 0.9444 | 0.9446 | 0.9444 | 0.9436 | [[50, 1], [3, 18]] | |
|
| 0.2039 | 3.9024 | 40 | 0.1603 | 0.9583 | 0.9582 | 0.9583 | 0.9580 | [[50, 1], [2, 19]] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|