File size: 8,181 Bytes
5a2b856 8c2ab3f 5a2b856 ee109c7 5a2b856 ee109c7 5a2b856 ee109c7 5a2b856 8c2ab3f 5a2b856 8c2ab3f 4a14f3c 5a2b856 ee109c7 5a2b856 ee109c7 5a2b856 8c2ab3f 5a2b856 8c2ab3f 5a2b856 ee109c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
#!/usr/bin/env python3
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from num2words import num2words as n2w
from transformers import AutoFeatureExtractor, AutoModelForCTC, pipeline, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM, Wav2Vec2FeatureExtractor
# from pyctcdecode import BeamSearchDecoderCTC
def log_results(result: Dataset, args: Dict[str, str]):
"""DO NOT CHANGE. This function computes and logs the result metrics."""
log_outputs = args.log_outputs
lm = "withLM" if args.use_lm else "noLM"
model_id = args.model_id.replace("/", "_").replace(".", "")
dataset_id = "_".join([model_id] + args.dataset.split("/") + [args.config, args.split, lm])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = f"{dataset_id}\nWER: {wer_result}\nCER: {cer_result}"
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(text: str, dataset: str) -> str:
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
text = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
if dataset.lower().endswith("nst"):
text = text.lower()
text = text.replace("(...vær stille under dette opptaket...)", "")
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
# text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("npsc"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("fleurs"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.compile(r"-?[1-9][\d.]*").sub(lambda x: n2w(x.group(0), lang="no"), text)
text = re.sub('\s+', ' ', text)
text = re.sub("<ee(eh)?>", "e", text)
text = re.sub("<mmm?>", "m", text)
text = re.sub("<qq>", "q", text)
text = re.sub("<inaudible>", "i", text)
# # In addition, we can normalize the target text, e.g. removing new lines characters etc...
# # note that order is important here!
# token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
# for t in token_sequences_to_ignore:
# text = " ".join(text.split(t))
return text
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
sampling_rate = feature_extractor.sampling_rate
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
# load eval pipeline
if args.device is None:
args.device = 0 if torch.cuda.is_available() else -1
# asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
model_instance = AutoModelForCTC.from_pretrained(args.model_id)
if args.use_lm:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
decoder = processor.decoder
else:
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
decoder = None
asr = pipeline(
"automatic-speech-recognition",
model=model_instance,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
decoder=decoder,
device=args.device
)
# feature_extractor_dict, _ = Wav2Vec2FeatureExtractor.get_feature_extractor_dict(args.model_id)
# feature_extractor_dict["processor_class"] = "Wav2Vec2Processor" if not args.use_lm else "Wav2Vec2ProcessorWithLM"
# feature_extractor = Wav2Vec2FeatureExtractor.from_dict(feature_extractor_dict)
# asr = pipeline("automatic-speech-recognition", model=args.model_id, feature_extractor=feature_extractor, device=args.device, decoder=BeamSearchDecoderCTC.load_from_dir("./"))
# map function to decode audio
def map_to_pred(batch):
prediction = asr(
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
)
batch["prediction"] = prediction[args.text_column]
batch["target"] = normalize_text(args.text_column, args.dataset)
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--text_column", type=str, default="text", help="Column name containing the transcription."
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--use_lm", action="store_true", help="If defined, use included language model as the decoder."
)
args = parser.parse_args()
main(args) |