File size: 10,769 Bytes
63194cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
#!/usr/bin/env python3
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from num2words import num2words as n2w
from slugify import slugify
from transformers import AutoFeatureExtractor, AutoModelForCTC, pipeline, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM, Wav2Vec2FeatureExtractor
# from pyctcdecode import BeamSearchDecoderCTC
from cardinal_numbers import convert_nums
def log_results(result: Dataset, args: Dict[str, str]):
"""DO NOT CHANGE. This function computes and logs the result metrics."""
log_outputs = args.log_outputs
lm = "withLM" if args.use_lm else "noLM"
model_id = args.model_id.replace("/", "_").replace(".", "")
if args.filter:
extra_args = [args.config, slugify(args.filter), args.split, lm]
else:
extra_args = [args.config, args.split, lm]
dataset_id = "_".join([model_id] + args.dataset.split("/") + extra_args)
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = f"{dataset_id}\nWER: {wer_result}\nCER: {cer_result}"
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
with open(f"{dataset_id}_eval_results.tsv", "w") as f:
f.write("\t".join([args.model_id, args.dataset, args.config, args.filter, args.split, str(lm), str(wer_result), str(cer_result)]))
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(original_text: str, dataset: str) -> str:
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
text = original_text.lower()
if dataset.lower().endswith("fleurs"):
replacements = (
(r"\be\.kr", "etter kristus fødsel"),
(r"\bf\.kr", "før kristi fødsel"),
(r"\bca[.]?\b", "circa"),
(r"(\d)\s*km/t", r"\1 kilometer i timen"),
(r"(\d)\s*km", r"\1 kilometer"),
(r"(\d)\s*cm", r"\1 centimeter"),
(r"(\d)\s*mm", r"\1 millimeter"),
(r"kl\.", "klokka"),
(r"f\.eks", "for eksempel"),
)
for abrev, expasion in replacements:
text = re.sub(abrev, expasion, text)
text = re.sub(r'(\d+)[-–](\d+)', r'\1 til \2', text) # 1-89, 70-90
text = re.sub(r'(\d{2}):00', r'\1', text) # 21:00
text = re.sub(r"(\d{2}):0(\d{1})", r"\1 null \2", text) # 17:03
text = re.sub(r"(\d{1,2}):(\d{1,2})", r"\1 \2", text) # 17:23 (time), 4:3 (aspect ratios)
text = re.sub(r"(1[1-9])00", r"\1 hundre", text) # 1800, 1900
text = re.sub(r"(1[1-9])0([1-9])", r"\1 null \2 ", text) # 1901, 1909
text = re.sub(r"(1[1-9])([1-9]\d)", r"\1 \2 ", text) # 1911, 1987
text = re.sub(r"(20)0([1-9])", r"\1 null \2 ", text) # 2009
text = re.sub(r"(20)(\d{2})", r"\1 \2 ", text) # 2009
text = re.sub(r"(\d{1,3})[.](\d{1,2})", r"\1 dot \2 ", text) # 802.11n, 2.5ghz (in English)
text = re.sub(r"(\d{1,2})[ .](\d{3})", r"\1\2", text) # 10 000, 32.000
text = re.sub(r'(\w+)-(\w+)', r'\1 \2', text) # n-standard
# text = re.compile(r"-?0?[1-9][\d.]*").sub(lambda x: n2w(x.group(0), lang="no"), text.replace(".", ""))
text = re.compile(r"-?0?[1-9][\d.]*").sub(lambda x: convert_nums(int(x.group(0)), nn=True), text.replace(".", ""))
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
text = re.sub(chars_to_ignore_regex, "", text) + " "
if dataset.lower().endswith("nst"):
text = text.lower()
text = text.replace("(...vær stille under dette opptaket...)", "")
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
# text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("npsc"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("fleurs"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.sub('[«»]', '', text)
text = re.sub('\s+', ' ', text)
text = re.sub('<e+h?>', 'ĥ', text)
text = re.sub('<m+>', 'ĥ', text)
text = re.sub('<q+>', 'ĥ', text)
text = re.sub('<inaudible>', 'ĥ', text)
text = re.sub('[<>]', '', text)
# # In addition, we can normalize the target text, e.g. removing new lines characters etc...
# # note that order is important here!
# token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
# for t in token_sequences_to_ignore:
# text = " ".join(text.split(t))
return text.strip()
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
if args.filter:
attribute, value = list(map(str.strip, args.filter.split(":")))
dataset = dataset.filter(
lambda x: x[attribute] == value,
desc=f"Filtering on {args.filter}",
)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
sampling_rate = feature_extractor.sampling_rate
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
# load eval pipeline
if args.device is None:
args.device = 0 if torch.cuda.is_available() else -1
# asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
model_instance = AutoModelForCTC.from_pretrained(args.model_id)
if args.use_lm:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
decoder = processor.decoder
else:
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
decoder = None
asr = pipeline(
"automatic-speech-recognition",
model=model_instance,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
decoder=decoder,
device=args.device
)
# feature_extractor_dict, _ = Wav2Vec2FeatureExtractor.get_feature_extractor_dict(args.model_id)
# feature_extractor_dict["processor_class"] = "Wav2Vec2Processor" if not args.use_lm else "Wav2Vec2ProcessorWithLM"
# feature_extractor = Wav2Vec2FeatureExtractor.from_dict(feature_extractor_dict)
# asr = pipeline("automatic-speech-recognition", model=args.model_id, feature_extractor=feature_extractor, device=args.device, decoder=BeamSearchDecoderCTC.load_from_dir("./"))
# map function to decode audio
def map_to_pred(batch):
prediction = asr(
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
)
batch["prediction"] = prediction["text"]
batch["target"] = normalize_text(batch[args.text_column], args.dataset)
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--filter", type=str, default="", help="Simple filter on attributes. *E.g.* `region_of_youth:Troms` would pnly keep those samplesfor which the condition is met"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--text_column", type=str, default="text", help="Column name containing the transcription."
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--use_lm", action="store_true", help="If defined, use included language model as the decoder."
)
args = parser.parse_args()
main(args)
|