Naruke's picture
Add new SentenceTransformer model.
a33ba98 verified
|
raw
history blame
29.8 kB
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Interest expense increased nominally by 1% from $935 million in 2022 to
      $944 million in 2023, and the change reflected only a small adjustment in
      the financial operations.
    sentences:
      - >-
        What recent technological advancements has the company implemented in
        set-top box (STB) solutions?
      - How much did the interest expense change from 2022 to 2023?
      - >-
        What are the conditions under which AENB is restricted from making
        dividend distributions to TRS without OCC approval?
  - source_sentence: Our products are sold in approximately 105 countries.
    sentences:
      - How much were the costs related to the January 2023 restructuring plan?
      - In how many countries are Eli Lilly and Company's products sold?
      - >-
        What led to the 74.3% decrease in total net revenues for the Corporate
        and Other segment in fiscal 2023 compared to fiscal 2022?
  - source_sentence: Item 8 is numbered as 39 in the document.
    sentences:
      - What number is associated with Item 8 in the document?
      - >-
        What was the total amount of fixed lease payment obligations as of
        December 31, 2023?
      - >-
        By how much would a 25 basis point increase in the expected rate of
        return on assets (ROA) affect the 2024 Pension Expense for U.S. plans?
  - source_sentence: >-
      The Intelligent Edge business segment under the Aruba brand includes a
      portfolio of solutions for secure edge-to-cloud connectivity, embracing
      work from anywhere environments, mobility, and IoT device connectivity.
    sentences:
      - What types of wireless services does AT&T provide in Mexico?
      - >-
        What was the approximate amount of civil penalties agreed upon in the
        consent agreement with the EPA in November 2023?
      - What is the focus of HPE's Intelligent Edge business segment?
  - source_sentence: >-
      As part of our solar energy system and energy storage contracts, we may
      provide the customer with performance guarantees that commit that the
      underlying system will meet or exceed the minimum energy generation or
      performance requirements specified in the contract.
    sentences:
      - >-
        What types of guarantees does Tesla provide to its solar and energy
        storage customers?
      - How many full-time employees did Microsoft report as of June 30, 2023?
      - >-
        How are the details about the company's legal proceedings provided in
        the report?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.71
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.84
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8685714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9142857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.71
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1737142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09142857142857143
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.71
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.84
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8685714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9142857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8124537511621754
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7797726757369615
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7826418437079763
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7042857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8357142857142857
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8657142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9114285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7042857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2785714285714286
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17314285714285713
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09114285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7042857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8357142857142857
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8657142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9114285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8077533543226267
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.77450283446712
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7775892822045911
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.7028571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8228571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8585714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8971428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7028571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2742857142857143
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1717142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0897142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7028571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8228571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8585714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8971428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8004396670945336
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7693480725623582
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7733203320348766
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6771428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8971428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6771428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0897142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6771428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8142857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8971428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.788715031897326
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7538418367346936
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7573369186799356
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6642857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7814285714285715
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8128571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.86
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6642857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2604761904761905
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16257142857142853
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.086
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6642857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7814285714285715
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8128571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.86
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7600084252085629
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7282585034013601
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.733116708012112
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Naruke/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'As part of our solar energy system and energy storage contracts, we may provide the customer with performance guarantees that commit that the underlying system will meet or exceed the minimum energy generation or performance requirements specified in the contract.',
    'What types of guarantees does Tesla provide to its solar and energy storage customers?',
    'How many full-time employees did Microsoft report as of June 30, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.71
cosine_accuracy@3 0.84
cosine_accuracy@5 0.8686
cosine_accuracy@10 0.9143
cosine_precision@1 0.71
cosine_precision@3 0.28
cosine_precision@5 0.1737
cosine_precision@10 0.0914
cosine_recall@1 0.71
cosine_recall@3 0.84
cosine_recall@5 0.8686
cosine_recall@10 0.9143
cosine_ndcg@10 0.8125
cosine_mrr@10 0.7798
cosine_map@100 0.7826

Information Retrieval

Metric Value
cosine_accuracy@1 0.7043
cosine_accuracy@3 0.8357
cosine_accuracy@5 0.8657
cosine_accuracy@10 0.9114
cosine_precision@1 0.7043
cosine_precision@3 0.2786
cosine_precision@5 0.1731
cosine_precision@10 0.0911
cosine_recall@1 0.7043
cosine_recall@3 0.8357
cosine_recall@5 0.8657
cosine_recall@10 0.9114
cosine_ndcg@10 0.8078
cosine_mrr@10 0.7745
cosine_map@100 0.7776

Information Retrieval

Metric Value
cosine_accuracy@1 0.7029
cosine_accuracy@3 0.8229
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.8971
cosine_precision@1 0.7029
cosine_precision@3 0.2743
cosine_precision@5 0.1717
cosine_precision@10 0.0897
cosine_recall@1 0.7029
cosine_recall@3 0.8229
cosine_recall@5 0.8586
cosine_recall@10 0.8971
cosine_ndcg@10 0.8004
cosine_mrr@10 0.7693
cosine_map@100 0.7733

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.8971
cosine_precision@1 0.6771
cosine_precision@3 0.2714
cosine_precision@5 0.1709
cosine_precision@10 0.0897
cosine_recall@1 0.6771
cosine_recall@3 0.8143
cosine_recall@5 0.8543
cosine_recall@10 0.8971
cosine_ndcg@10 0.7887
cosine_mrr@10 0.7538
cosine_map@100 0.7573

Information Retrieval

Metric Value
cosine_accuracy@1 0.6643
cosine_accuracy@3 0.7814
cosine_accuracy@5 0.8129
cosine_accuracy@10 0.86
cosine_precision@1 0.6643
cosine_precision@3 0.2605
cosine_precision@5 0.1626
cosine_precision@10 0.086
cosine_recall@1 0.6643
cosine_recall@3 0.7814
cosine_recall@5 0.8129
cosine_recall@10 0.86
cosine_ndcg@10 0.76
cosine_mrr@10 0.7283
cosine_map@100 0.7331

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 9 tokens
    • mean: 45.57 tokens
    • max: 289 tokens
    • min: 9 tokens
    • mean: 20.32 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    The detailed information about commitments and contingencies related to legal proceedings is included under Note 13 in Part II, Item 8 of the Annual Report. Where can detailed information about the commitments and contingencies related to legal proceedings be found in the Annual Report on Form 10-K?
    American Express's decision to reinvest gains into its business will depend on regulatory and other approvals, consultation requirements, the execution of ancillary agreements, the cost and availability of financing for the purchaser to fund the transaction and the potential loss of key customers, vendors and other business partners and management’s decisions regarding future operations, strategies and business initiatives. What factors influence American Express's decision to reinvest gains into its business?
    Lease obligations as of June 30, 2023, related to office space and various facilities totaled $883.1 million, with lease terms ranging from one to 21 years and are mostly renewable. How much were lease obligations related to office space and other facilities as of June 30, 2023, and what were the terms?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4061 10 0.9835 - - - - -
0.8122 20 0.4319 - - - - -
0.9746 24 - 0.7541 0.7729 0.7738 0.7242 0.7786
1.2183 30 0.3599 - - - - -
1.6244 40 0.2596 - - - - -
1.9492 48 - 0.7573 0.7733 0.7776 0.7331 0.7826
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}