File size: 10,253 Bytes
503a645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Intent-classification-12kv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Intent-classification-12kv2

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0074
- Accuracy: 0.9984
- F1: 0.9983
- Precision: 0.9983
- Recall: 0.9983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.742         | 0.05  | 10   | 1.4822          | 0.6954   | 0.6918 | 0.7288    | 0.6966 |
| 1.2849        | 0.11  | 20   | 0.9533          | 0.8713   | 0.8699 | 0.8899    | 0.8729 |
| 0.8226        | 0.16  | 30   | 0.5235          | 0.9786   | 0.9786 | 0.9790    | 0.9785 |
| 0.399         | 0.21  | 40   | 0.2295          | 0.9812   | 0.9812 | 0.9811    | 0.9817 |
| 0.1871        | 0.26  | 50   | 0.1168          | 0.9839   | 0.9839 | 0.9844    | 0.9836 |
| 0.0855        | 0.32  | 60   | 0.0508          | 0.9928   | 0.9928 | 0.9928    | 0.9928 |
| 0.0546        | 0.37  | 70   | 0.0300          | 0.9947   | 0.9947 | 0.9948    | 0.9947 |
| 0.0226        | 0.42  | 80   | 0.0271          | 0.9947   | 0.9948 | 0.9947    | 0.9948 |
| 0.0306        | 0.47  | 90   | 0.0416          | 0.9888   | 0.9887 | 0.9894    | 0.9883 |
| 0.0336        | 0.53  | 100  | 0.0157          | 0.9970   | 0.9970 | 0.9970    | 0.9971 |
| 0.0373        | 0.58  | 110  | 0.0214          | 0.9951   | 0.9951 | 0.9952    | 0.9951 |
| 0.0094        | 0.63  | 120  | 0.0121          | 0.9970   | 0.9971 | 0.9971    | 0.9970 |
| 0.0077        | 0.68  | 130  | 0.0094          | 0.9980   | 0.9980 | 0.9980    | 0.9981 |
| 0.0253        | 0.74  | 140  | 0.0077          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0233        | 0.79  | 150  | 0.0075          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0068        | 0.84  | 160  | 0.0080          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0286        | 0.89  | 170  | 0.0141          | 0.9964   | 0.9964 | 0.9964    | 0.9964 |
| 0.0139        | 0.95  | 180  | 0.0104          | 0.9970   | 0.9970 | 0.9970    | 0.9971 |
| 0.0043        | 1.0   | 190  | 0.0074          | 0.9977   | 0.9977 | 0.9977    | 0.9976 |
| 0.0122        | 1.05  | 200  | 0.0065          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0071        | 1.11  | 210  | 0.0059          | 0.9980   | 0.9980 | 0.9981    | 0.9980 |
| 0.0025        | 1.16  | 220  | 0.0083          | 0.9984   | 0.9984 | 0.9984    | 0.9983 |
| 0.0232        | 1.21  | 230  | 0.0057          | 0.9984   | 0.9984 | 0.9984    | 0.9984 |
| 0.0035        | 1.26  | 240  | 0.0056          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0246        | 1.32  | 250  | 0.0053          | 0.9984   | 0.9984 | 0.9984    | 0.9983 |
| 0.0023        | 1.37  | 260  | 0.0063          | 0.9980   | 0.9980 | 0.9981    | 0.9980 |
| 0.0021        | 1.42  | 270  | 0.0048          | 0.9984   | 0.9984 | 0.9984    | 0.9983 |
| 0.002         | 1.47  | 280  | 0.0028          | 0.9997   | 0.9997 | 0.9997    | 0.9997 |
| 0.022         | 1.53  | 290  | 0.0023          | 0.9997   | 0.9997 | 0.9997    | 0.9997 |
| 0.0135        | 1.58  | 300  | 0.0046          | 0.9987   | 0.9987 | 0.9987    | 0.9987 |
| 0.0026        | 1.63  | 310  | 0.0082          | 0.9977   | 0.9977 | 0.9979    | 0.9976 |
| 0.0019        | 1.68  | 320  | 0.0043          | 0.9990   | 0.9990 | 0.9991    | 0.9990 |
| 0.0017        | 1.74  | 330  | 0.0035          | 0.9993   | 0.9994 | 0.9994    | 0.9994 |
| 0.0019        | 1.79  | 340  | 0.0015          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0014        | 1.84  | 350  | 0.0013          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0014        | 1.89  | 360  | 0.0013          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0013        | 1.95  | 370  | 0.0012          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0013        | 2.0   | 380  | 0.0011          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0012        | 2.05  | 390  | 0.0011          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0011        | 2.11  | 400  | 0.0011          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0011        | 2.16  | 410  | 0.0010          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0011        | 2.21  | 420  | 0.0010          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0014        | 2.26  | 430  | 0.0009          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.001         | 2.32  | 440  | 0.0009          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.001         | 2.37  | 450  | 0.0009          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 2.42  | 460  | 0.0009          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 2.47  | 470  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 2.53  | 480  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 2.58  | 490  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 2.63  | 500  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.68  | 510  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.74  | 520  | 0.0008          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.79  | 530  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.84  | 540  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.89  | 550  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0008        | 2.95  | 560  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.0   | 570  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0009        | 3.05  | 580  | 0.0007          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.11  | 590  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.16  | 600  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.21  | 610  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.26  | 620  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.32  | 630  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0007        | 3.37  | 640  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.42  | 650  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.47  | 660  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.53  | 670  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.58  | 680  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.63  | 690  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.68  | 700  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.74  | 710  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.79  | 720  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.84  | 730  | 0.0006          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.89  | 740  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 3.95  | 750  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.0   | 760  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.05  | 770  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.11  | 780  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.16  | 790  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.21  | 800  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.26  | 810  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.32  | 820  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.37  | 830  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.42  | 840  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.47  | 850  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.53  | 860  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.58  | 870  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0005        | 4.63  | 880  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.68  | 890  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0005        | 4.74  | 900  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0005        | 4.79  | 910  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.84  | 920  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0005        | 4.89  | 930  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0006        | 4.95  | 940  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |
| 0.0005        | 5.0   | 950  | 0.0005          | 1.0      | 1.0    | 1.0       | 1.0    |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2