Hugging Face
Models
Datasets
Spaces
Posts
Docs
Enterprise
Pricing
Log In
Sign Up
4
Sambit Kumar Barik
NaiveAttention
Follow
Nikhil7280's profile picture
1 follower
·
24 following
Sam-364
sambit-kumar-barik-1237ba204
AI & ML interests
LLM | VLM | Natural Language Processing
Recent Activity
reacted
to
ImranzamanML
's
post
with 👍
13 days ago
Here is how we can calculate the size of any LLM model: Each parameter in LLM models is typically stored as a floating-point number. The size of each parameter in bytes depends on the precision. 32-bit precision: Each parameter takes 4 bytes. 16-bit precision: Each parameter takes 2 bytes To calculate the total memory usage of the model: Memory usage (in bytes) = No. of Parameters × Size of Each Parameter For example: 32-bit Precision (FP32) In 32-bit floating-point precision, each parameter takes 4 bytes. Memory usage in bytes = 1 billion parameters × 4 bytes 1,000,000,000 × 4 = 4,000,000,000 bytes In gigabytes: ≈ 3.73 GB 16-bit Precision (FP16) In 16-bit floating-point precision, each parameter takes 2 bytes. Memory usage in bytes = 1 billion parameters × 2 bytes 1,000,000,000 × 2 = 2,000,000,000 bytes In gigabytes: ≈ 1.86 GB It depends on whether you use 32-bit or 16-bit precision, a model with 1 billion parameters would use approximately 3.73 GB or 1.86 GB of memory, respectively.
updated
a model
27 days ago
NaiveAttention/LeVIT-364-Finetuned
View all activity
Organizations
spaces
2
Sort: Recently updated
Sleeping
1
😻
GradTrainer
Runtime error
🚀
AutoTrain Advanced
models
5
Sort: Recently updated
NaiveAttention/LeVIT-364-Finetuned
Updated
27 days ago
•
19
NaiveAttention/demo-tokenizer
Updated
Mar 27
NaiveAttention/NexusRaven_v2_sharded
Updated
Mar 20
NaiveAttention/peft-starcoder-lora-t4x2
Updated
Mar 19
•
2
NaiveAttention/NexusRaven-V2-13B-awq
Text Generation
•
Updated
Feb 12
•
18
•
3
datasets
None public yet