metadata
license: llama2
language:
- hu
- en
tags:
- puli
PULI LlumiX 32K (6.74B billion parameter)
For further details or testing our instruct model, see our demo site.
- Trained with OpenChatKit github
- The LLaMA-2-7B-32K model were continuously pretrained on Hungarian dataset
- The model has been extended to a context length of 32K with position interpolation
- Checkpoint: 100 000 steps
Dataset for continued pretraining
- Hungarian: 7.9 billion words, documents (763K) that exceed 5000 words in length
- English: Long Context QA (2 billion words), BookSum (78 million words)
Limitations
- max_seq_length = 32 768
- float16
- vocab size: 32 000
Usage with pipeline
from transformers import pipeline, LlamaForCausalLM, LlamaTokenizer
model = LlamaForCausalLM.from_pretrained("NYTK/PULI-LlumiX-32K")
tokenizer = LlamaTokenizer.from_pretrained("NYTK/PULI-LlumiX-32K")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
print(generator(prompt, max_new_tokens=30)[0]["generated_text"])