Uploaded model, tokenizer and readme.
Browse files- README.md +114 -1
- config.json +78 -0
- generation_config.json +9 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +7 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,116 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
tags:
|
5 |
+
- GlórIA
|
6 |
+
- European Portuguese
|
7 |
+
- gptneo
|
8 |
+
- decoder
|
9 |
+
- foundation model
|
10 |
+
- text-generation
|
11 |
+
datasets:
|
12 |
+
- europarl_bilingual
|
13 |
+
- assin2
|
14 |
+
- dlb/plue
|
15 |
+
- oscar-corpus/OSCAR-2301
|
16 |
+
- PORTULAN/glue-ptpt
|
17 |
+
widget:
|
18 |
+
- text: A culinária portuguesa é rica em aromas e
|
19 |
+
- text: Os computadores hoje em dia são muito
|
20 |
+
- text: A literatura Portuguesa é
|
21 |
+
inference:
|
22 |
+
parameters:
|
23 |
+
temperature: 1
|
24 |
+
repetition_penalty: 2
|
25 |
+
max_new_tokens: 30
|
26 |
+
num_beams: 4
|
27 |
+
do_sample: true
|
28 |
+
top_k: 50
|
29 |
+
library_name: transformers
|
30 |
---
|
31 |
+
|
32 |
+
# GlórIA 1.3B
|
33 |
+
|
34 |
+
## Model Description
|
35 |
+
**GlórIA** is a large generative language model, with special **focus on European Portuguese**.
|
36 |
+
|
37 |
+
It is a 1.3B parameters model, based on [GPTNeo](https://huggingface.co/EleutherAI/gpt-neo-1.3B), which has 24 layers and a hidden size of 2048.
|
38 |
+
|
39 |
+
## Training Data
|
40 |
+
**GlórIA 1.3B** was trained on a large corpora, with approximately 35B tokens. This corpus was built by gathering multiple Portuguese sources:
|
41 |
+
- [ArquivoPT News PT-PT Dataset](): A collection of 1.4M European Portuguese archived news and periodicals from [Arquivo.pt](https://arquivo.pt/).
|
42 |
+
- [ClueWeb-Large PT-PT](https://lemurproject.org/clueweb22.php/): Multilingual Corpus, similar to OSCAR. Metadata was used to filter only PT-PT webpages.
|
43 |
+
- [Europarl PT-PT](https://www.statmt.org/europarl/): A parallel corpus with documents such as transcripts from the European Parliament (we only used the PT-PT documents).
|
44 |
+
- [OpenSubtitles PT-PT](https://opus.nlpl.eu/OpenSubtitles.php): A corpus containing PT-PT subtitles from [OpenSubtitles](http://www.opensubtitles.org/).
|
45 |
+
- [OSCAR PT-PT](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201): Multilingual Corpus obtained from filtering the Common Crawl corpus. We used metadata to filter only PT-PT webpages.
|
46 |
+
- [PT WIKI](): The Portuguese Wikipedia. 2022/06/20 Dump.
|
47 |
+
|
48 |
+
<br>
|
49 |
+
|
50 |
+
## Evaluation - CALAME-PT
|
51 |
+
GlórIA 1.3B generative capabilities were evaluated on **CALAME-PT** - a new Portuguese benchmark with the goal of predicting the last word of a sentence, according to a given context.
|
52 |
+
|
53 |
+
| Model and Size | Exact-Match |
|
54 |
+
| ---------------- | ---------- |
|
55 |
+
| Gervasio-PTPT (1B) | 44.01 |
|
56 |
+
| mGPT (1.3B) | 47.14 |
|
57 |
+
| GlórIA (1.3B) | 52.79 |
|
58 |
+
|
59 |
+
|
60 |
+
<br>
|
61 |
+
|
62 |
+
# How to use
|
63 |
+
## Basic Inference Example
|
64 |
+
```py
|
65 |
+
>>> from transformers import pipeline
|
66 |
+
>>> generator = pipeline('text-generation', model='NOVA-vision-language/GlorIA-1.3B-original')
|
67 |
+
>>> generator("A culinária portuguesa é rica em aromas e", do_sample=True, min_length=50)
|
68 |
+
[{'generated_text': 'A culinária portuguesa é rica em aromas e'}]
|
69 |
+
```
|
70 |
+
## Recommended Parameters and Usage (for more flexibility)
|
71 |
+
```py
|
72 |
+
from transformers import GenerationConfig, TextGenerationPipeline
|
73 |
+
generation_config = GenerationConfig(
|
74 |
+
max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id,
|
75 |
+
no_repeat_ngram_size=0, num_beams=4, repetition_penalty=2.0, temperature=1.0,
|
76 |
+
output_scores=True, early_stopping=True
|
77 |
+
)
|
78 |
+
generator = TextGenerationPipeline(model=model, task="text-generation",
|
79 |
+
tokenizer=loaded_tokenizer, device=0)
|
80 |
+
completion_prompts = ["Fernando Pessoa foi um dos poetas mais relevantes de"]
|
81 |
+
out = generator(completion_prompts, generation_config=generation_config)
|
82 |
+
[[{'generated_text': 'Fernando Pessoa foi um dos poetas mais relevantes de toda a literatura portuguesa, autor de uma obra que se estende por mais de quatro dezenas de livros, entre os quais "Mensagem", "O Guardador de Rebanhos", "Livro do desassossego", "Odes",'}]]
|
83 |
+
```
|
84 |
+
|
85 |
+
<br>
|
86 |
+
|
87 |
+
|
88 |
+
# Citation
|
89 |
+
|
90 |
+
|
91 |
+
Please use the following BibTeX to cite our paper:
|
92 |
+
```
|
93 |
+
@InProceedings{gloria_ptpt_propor2024,
|
94 |
+
author="Lopes, Ricardo
|
95 |
+
and Magalhães, João
|
96 |
+
and Semedo, David",
|
97 |
+
title="GlórIA: A Generative and Open Large Language Model for Portuguese",
|
98 |
+
booktitle="Computational Processing of the Portuguese Language (PROPOR 2024)",
|
99 |
+
year="2024",
|
100 |
+
}
|
101 |
+
```
|
102 |
+
|
103 |
+
**License**: GlórIA's usage is restricted to research-only purposes, subject to the ClueWeb22 Dataset license, which can be freely obtained [here](https://www.lemurproject.org/clueweb22/obtain.php).
|
104 |
+
|
105 |
+
|
106 |
+
# Acknowledgements
|
107 |
+
|
108 |
+
We would like to thank Arquivo.pt's team for their content preservation efforts, and for all the help and guidance in accessing the archived web pages at scale.
|
109 |
+
This work was partially funded by the FCT project NOVA LINCS Ref. UIDP/04516/2020, by CMU|Portugal project iFetch, Ref. CMUP LISBOA-01-0247-FEDER-045920, and by the FCT project Ref. Nº CPCA-IAC/AV/594875/2023.
|
110 |
+
|
111 |
+
<br>
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "D:\\FCT\\TESE\\ThesisTrainer\\model_hub",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local",
|
13 |
+
"global",
|
14 |
+
"local",
|
15 |
+
"global",
|
16 |
+
"local",
|
17 |
+
"global",
|
18 |
+
"local",
|
19 |
+
"global",
|
20 |
+
"local",
|
21 |
+
"global",
|
22 |
+
"local",
|
23 |
+
"global",
|
24 |
+
"local",
|
25 |
+
"global",
|
26 |
+
"local",
|
27 |
+
"global",
|
28 |
+
"local",
|
29 |
+
"global",
|
30 |
+
"local",
|
31 |
+
"global",
|
32 |
+
"local"
|
33 |
+
],
|
34 |
+
"attention_types": [
|
35 |
+
[
|
36 |
+
[
|
37 |
+
"global",
|
38 |
+
"local"
|
39 |
+
],
|
40 |
+
12
|
41 |
+
]
|
42 |
+
],
|
43 |
+
"bos_token_id": 50256,
|
44 |
+
"classifier_dropout": 0.1,
|
45 |
+
"do_sample": true,
|
46 |
+
"embed_dropout": 0,
|
47 |
+
"eos_token_id": 50256,
|
48 |
+
"gradient_checkpointing": false,
|
49 |
+
"hidden_size": 2048,
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"intermediate_size": null,
|
52 |
+
"layer_norm_epsilon": 1e-05,
|
53 |
+
"max_length": 50,
|
54 |
+
"max_position_embeddings": 2048,
|
55 |
+
"model_type": "gpt_neo",
|
56 |
+
"num_heads": 16,
|
57 |
+
"num_layers": 24,
|
58 |
+
"resid_dropout": 0,
|
59 |
+
"summary_activation": null,
|
60 |
+
"summary_first_dropout": 0.1,
|
61 |
+
"summary_proj_to_labels": true,
|
62 |
+
"summary_type": "cls_index",
|
63 |
+
"summary_use_proj": true,
|
64 |
+
"task_specific_params": {
|
65 |
+
"text-generation": {
|
66 |
+
"do_sample": true,
|
67 |
+
"max_length": 50,
|
68 |
+
"temperature": 0.9
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"temperature": 0.9,
|
72 |
+
"tokenizer_class": "GPT2Tokenizer",
|
73 |
+
"torch_dtype": "float32",
|
74 |
+
"transformers_version": "4.29.1",
|
75 |
+
"use_cache": true,
|
76 |
+
"vocab_size": 50258,
|
77 |
+
"window_size": 256
|
78 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 50256,
|
6 |
+
"max_length": 50,
|
7 |
+
"temperature": 0.9,
|
8 |
+
"transformers_version": "4.29.1"
|
9 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ff171448458ddb881d3095cc771f6d935004d12f807c304e5905f46a19fe492
|
3 |
+
size 5363015080
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d067b12f2fe852c21aab4e4cef51ef7ddee1ff47896385dc077c9b1c784c2a93
|
3 |
+
size 5363096533
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"tokenizer_class": "GPT2Tokenizer",
|
6 |
+
"unk_token": "<|endoftext|>"
|
7 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|