Safetensors
File size: 2,471 Bytes
b1775c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: other
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: /data1/model/llama2/meta-llama/Llama2-13b
model-index:
- name: news_commentary_es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# news_commentary_es

This model is a fine-tuned version of [/data1/model/llama2/meta-llama/Llama2-13b](https://huggingface.co//data1/model/llama2/meta-llama/Llama2-13b) on the news_commentary_es dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5704

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6296        | 0.25  | 200  | 0.6344          |
| 0.6272        | 0.5   | 400  | 0.6124          |
| 0.6167        | 0.75  | 600  | 0.6020          |
| 0.5882        | 1.0   | 800  | 0.5940          |
| 0.5522        | 1.25  | 1000 | 0.5889          |
| 0.5919        | 1.51  | 1200 | 0.5836          |
| 0.6038        | 1.76  | 1400 | 0.5801          |
| 0.5882        | 2.01  | 1600 | 0.5773          |
| 0.5302        | 2.26  | 1800 | 0.5754          |
| 0.5331        | 2.51  | 2000 | 0.5732          |
| 0.5669        | 2.76  | 2200 | 0.5714          |
| 0.5551        | 3.01  | 2400 | 0.5706          |
| 0.5499        | 3.26  | 2600 | 0.5716          |
| 0.545         | 3.51  | 2800 | 0.5704          |
| 0.5253        | 3.76  | 3000 | 0.5704          |
| 0.5418        | 4.02  | 3200 | 0.5702          |
| 0.5289        | 4.27  | 3400 | 0.5704          |
| 0.4983        | 4.52  | 3600 | 0.5706          |
| 0.5371        | 4.77  | 3800 | 0.5705          |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2