File size: 8,946 Bytes
455acc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import torch
import numpy as np
import gguf  # This needs to be the llama.cpp one specifically!
import argparse
from tqdm import tqdm

from safetensors.torch import load_file

QUANTIZATION_THRESHOLD = 1024
REARRANGE_THRESHOLD = 512
MAX_TENSOR_NAME_LENGTH = 127


class QuantError(Exception):
    pass

class quants:
    @staticmethod
    def quantize(data, data_qtype):
        # Implement quantization logic here
        if data_qtype == GGMLQuantizationType.F16:
            return data.astype(np.float16)
        elif data_qtype == GGMLQuantizationType.BF16:
            return data.astype(np.float32)  # BF16 is not supported by NumPy, so use float32 instead
        else:
            raise QuantError("Unsupported quantization type")

class ModelTemplate:
    arch = "invalid"  # string describing architecture
    shape_fix = False  # whether to reshape tensors
    keys_detect = []  # list of lists to match in state dict
    keys_banned = []  # list of keys that should mark model as invalid for conversion

class ModelFlux(ModelTemplate):
    arch = "fluxz"
    keys_detect = [
        ("transformer_blocks.0.attn.norm_added_k.weight",),
        ("double_blocks.0.img_attn.proj.weight",),
    ]
    keys_banned = ["transformer_blocks.0.attn.norm_added_k.weight",]

class ModelSD3(ModelTemplate):
    arch = "sd3"
    keys_detect = [
        ("transformer_blocks.0.attn.add_q_proj.weight",),
        ("joint_blocks.0.x_block.attn.qkv.weight",),
    ]
    keys_banned = ["transformer_blocks.0.attn.add_q_proj.weight",]

class ModelSDXL(ModelTemplate):
    arch = "sdxl"
    shape_fix = True
    keys_detect = [
        ("down_blocks.0.downsamplers.0.conv.weight", "add_embedding.linear_1.weight",),
        (
            "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight",
            "output_blocks.2.2.conv.weight", "output_blocks.5.2.conv.weight",
        ),  # Non-diffusers
        ("label_emb.0.0.weight",),
    ]

class ModelSD1(ModelTemplate):
    arch = "sd1"
    shape_fix = False
    keys_detect = [
        ("down_blocks.0.downsamplers.0.conv.weight",),
        (
            "input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", "input_blocks.9.0.op.weight",
            "output_blocks.2.1.conv.weight", "output_blocks.5.2.conv.weight", "output_blocks.8.2.conv.weight"
        ),  # Non-diffusers
    ]

# Prioritize ModelSD3 over ModelFlux
arch_list = [ModelSD3, ModelFlux, ModelSDXL, ModelSD1]

def is_model_arch(model, state_dict):
    # check if model is correct
    matched = False
    invalid = False
    for match_list in model.keys_detect:
        if all(key in state_dict for key in match_list):
            matched = True
            invalid = any(key in state_dict for key in model.keys_banned)
            break
    assert not invalid, "Model architecture not allowed for conversion! (i.e. reference VS diffusers format)"
    return matched

def detect_arch(state_dict):
    model_arch = None
    for arch in arch_list:
        if is_model_arch(arch, state_dict):
            model_arch = arch
            break
    assert model_arch is not None, "Unknown model architecture!"
    return model_arch

def parse_args():
    parser = argparse.ArgumentParser(description="Generate F16 GGUF files from single UNET")
    parser.add_argument("--src", required=True, help="Source model ckpt file.")
    parser.add_argument("--dst", help="Output unet gguf file.")
    args = parser.parse_args()

    if not os.path.isfile(args.src):
        parser.error("No input provided!")

    return args

def load_state_dict(path):
    if any(path.endswith(x) for x in [".ckpt", ".pt", ".bin", ".pth"]):
        state_dict = torch.load(path, map_location="cpu", weights_only=True)
        state_dict = state_dict.get("model", state_dict)
    else:
        state_dict = load_file(path)

    # only keep unet with no prefix!
    sd = {}
    has_prefix = any(["model.diffusion_model." in x for x in state_dict.keys()])
    for k, v in state_dict.items():
        if has_prefix and "model.diffusion_model." not in k:
            continue
        if has_prefix:
            k = k.replace("model.diffusion_model.", "")
        sd[k] = v

    return sd

def load_model(path):
    state_dict = load_state_dict(path)
    model_arch = detect_arch(state_dict)
    print(f"* Architecture detected from input: {model_arch.arch}")
    writer = gguf.GGUFWriter(path=None, arch=model_arch.arch)
    return (writer, state_dict, model_arch)

def handle_tensors(args, writer, state_dict, model_arch):
    name_lengths = tuple(sorted(
        ((key, len(key)) for key in state_dict.keys()),
        key=lambda item: item[1],
        reverse=True,
    ))
    if not name_lengths:
        return
    max_name_len = name_lengths[0][1]
    if max_name_len > MAX_TENSOR_NAME_LENGTH:
        bad_list = ", ".join(f"{key!r} ({namelen})" for key, namelen in name_lengths if namelen > MAX_TENSOR_NAME_LENGTH)
        raise ValueError(f"Can only handle tensor names up to {MAX_TENSOR_NAME_LENGTH} characters. Tensors exceeding the limit: {bad_list}")
    for key, data in tqdm(state_dict.items()):
        old_dtype = data.dtype

        if data.dtype == torch.bfloat16:
            data = data.to(torch.float32).numpy()
        # this is so we don't break torch 2.0.X
        elif data.dtype in [getattr(torch, "float8_e4m3fn", "_invalid"), getattr(torch, "float8_e5m2", "_invalid")]:
            data = data.to(torch.float16).numpy()
        else:
            data = data.numpy()

        n_dims = len(data.shape)
        data_shape = data.shape
        data_qtype = getattr(
            gguf.GGMLQuantizationType,
            "BF16" if old_dtype == torch.bfloat16 else "F16"
        )

        # get number of parameters (AKA elements) in this tensor
        n_params = 1
        for dim_size in data_shape:
            n_params *= dim_size

        # keys to keep as max precision
        blacklist = {
            "time_embedding.",
            "add_embedding.",
            "time_in.",
            "txt_in.",
            "vector_in.",
            "img_in.",
            "guidance_in.",
            "final_layer.",
        }

        if old_dtype in (torch.float32, torch.bfloat16):
            if n_dims == 1:
                # one-dimensional tensors should be kept in F32
                # also speeds up inference due to not dequantizing
                data_qtype = gguf.GGMLQuantizationType.F32

            elif n_params <= QUANTIZATION_THRESHOLD:
                # very small tensors
                data_qtype = gguf.GGMLQuantizationType.F32

            elif ".weight" in key and any(x in key for x in blacklist):
                data_qtype = gguf.GGMLQuantizationType.F32

        if (model_arch.shape_fix                        # NEVER reshape for models such as flux
            and n_dims > 1                              # Skip one-dimensional tensors
            and n_params >= REARRANGE_THRESHOLD         # Only rearrange tensors meeting the size requirement
            and (n_params / 256).is_integer()           # Rearranging only makes sense if total elements is divisible by 256
            and not (data.shape[-1] / 256).is_integer() # Only need to rearrange if the last dimension is not divisible by 256
        ):
            orig_shape = data.shape
            data = data.reshape(n_params // 256, 256)
            writer.add_array(f"comfy.gguf.orig_shape.{key}", tuple(int(dim) for dim in orig_shape))

        new_name = key # do we need to rename?

        shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
        tqdm.write(f"{f'%-{max_name_len + 4}s' % f'{new_name}'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")

        writer.add_tensor(new_name, data, raw_dtype=data_qtype)



def load_model(path):
    state_dict = load_state_dict(path)
    model_arch = detect_arch(state_dict)
    print(f"* Architecture detected from input: {model_arch.arch}")
    return state_dict, model_arch

...

if __name__ == "__main__":
    args = parse_args()
    path = args.src
    state_dict, model_arch = load_model(path)

    if next(iter(state_dict.values())).dtype == torch.bfloat16:
        out_path = f"{os.path.splitext(path)[0]}-BF16.gguf"
    else:
        out_path = f"{os.path.splitext(path)[0]}-F16.gguf"

    out_path = args.dst or out_path
    if os.path.isfile(out_path):
        input("Output exists enter to continue or ctrl+c to abort!")

    writer = gguf.GGUFWriter(path=out_path, arch=model_arch.arch)
    writer.add_quantization_version(1)

    handle_tensors(args, writer, state_dict, model_arch)
    writer.write_header_to_file()
    writer.write_kv_data_to_file()
    writer.write_tensors_to_file()
    writer.close()