File size: 2,337 Bytes
b712b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa7b92
b712b26
 
 
 
 
 
 
 
 
1760673
b712b26
 
 
aaa7b92
b712b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: irony_es_United_States
  results: []
---


# irony_es_United_States

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on part of the MultiPICo dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0041
- Accuracy: 0.6530
- Precision: 0.4709
- Recall: 0.3716
- F1: 0.4154

## Model description

The model is trained considering the annotation of Spanish-speaking annotators from the United States only, on instances in Spanish (all linguistic varieties). The annotations from these annotators are aggregated using majority voting and then used to train the model.

## Training and evaluation data

The model has been trained on the annotation from annotators from the US from the MultiPICo dataset (instances in Spanish). The data has been randomly split into a train and a validation set.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0044        | 1.0   | 124  | 0.0043          | 0.5266   | 0.3652    | 0.5780 | 0.4476 |
| 0.0043        | 2.0   | 248  | 0.0043          | 0.4414   | 0.3553    | 0.8394 | 0.4993 |
| 0.0043        | 3.0   | 372  | 0.0042          | 0.6377   | 0.4398    | 0.3349 | 0.3802 |
| 0.0042        | 4.0   | 496  | 0.0041          | 0.4414   | 0.3513    | 0.8073 | 0.4896 |
| 0.004         | 5.0   | 620  | 0.0040          | 0.4840   | 0.3676    | 0.7706 | 0.4978 |
| 0.0036        | 6.0   | 744  | 0.0036          | 0.6499   | 0.4764    | 0.5550 | 0.5127 |
| 0.0031        | 7.0   | 868  | 0.0040          | 0.5297   | 0.3959    | 0.7936 | 0.5282 |
| 0.0024        | 8.0   | 992  | 0.0041          | 0.6530   | 0.4709    | 0.3716 | 0.4154 |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1