File size: 39,046 Bytes
d3d8ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:882
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Data Discovery & Classification Sensitive Data Catalog Sensitive
    Data Catalog People Data Graph People Data Graph Data Mapping Automation View
    Data Subject Request Automation View People Data Graph View Assessment Automation
    View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach
    Management View Privacy Policy Management View Privacy Center View Data Security
    Posture Management View Data Access Intelligence & Governance View Data Risk Management
    View Data Breach Analysis View Data Catalog View Data Lineage View Data Quality
    View Asset and Data Discovery View Data Access Intelligence & Governance View
    Data Privacy Automation View
  sentences:
  - How does coordinating a response in managing a data breach and meeting global
    regulatory obligations help automate compliance with global privacy regulations?
  - What law replaced Law No. 1682/2001 in Paraguay's data protection regulations
    and what are the restrictions on publicizing sensitive data under it?
  - What are the different components or tools related to Data Discovery & Classification?
- source_sentence: View Assessment Automation View Cookie Consent View Universal Consent
    View Vendor Risk Assessment View Breach Management View Privacy Policy Management
    View Privacy Center View Learn more Security Identify data risk and enable protection
    & control Data Security Posture Management View Data Access Intelligence & Governance
    View Data Risk Management View Data Breach Analysis View Learn more Governance
    Optimize Data Governance with granular insights into your data Data Catalog View
    Data Lineage View Data Quality View Data Controls Orchestrator View Solutions
    Technologies Covering you everywhere with 1000+ integrations across data systems.
    Snowflake View AW,  View Assessment Automation View Cookie Consent View Universal
    Consent View Vendor Risk Assessment View Breach Management View Privacy Policy
    Management View Privacy Center View Learn more Security Identify data risk and
    enable protection & control Data Security Posture Management View Data Access
    Intelligence & Governance View Data Risk Management View Data Breach Analysis
    View Learn more Governance Optimize Data Governance with granular insights into
    your data Data Catalog View Data Lineage View Data Quality View Data Controls
    Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations
    across data systems. Snowflake View AW
  sentences:
  - What can the data principal do if the data fiduciary disagrees with their request
    for correction, completion, update, or erasure, and how does cross-border data
    transfer factor in?
  - What is the purpose of the Vendor Risk Assessment for data security and governance?
  - How can privacy automation help in complying with global privacy regulations?
- source_sentence: 'of 2021 is the British Virgin Island’s main data protection law
    on par with the EU and UK standards. Learn more ### Jamaica The Data Protection
    Act No. 7 of 2020 is Jamaica’s data protection regulation, enforced by the Office
    of the Information Commissioner. Learn more ### Ukraine The Law on Personal Data
    Protection is Ukraine’s main data protection law, making it one of the few such
    regulations that precede the GDPR in Europe. Learn more ### Uzbekistan Uzbekistan
    has several regulations that govern different aspects of data protection within
    the country. Learn more about : Law on Personal Data Bill to Improve the Legal
    Framework for Personal Data Draft Law on Advertising Law on Cybersecurity (No.
    RK 764) ### Monaco Act No. 1.165 on the Protection of Personal Data regulates
    personal data protection-related matters in the Principality of Monaco'
  sentences:
  - What are the conditions for parental consent under PIPL and the requirements for
    privacy notices?
  - What does the Knowledge Center provide information on in relation to security?
  - Which European country has a data protection law that predates the GDPR and is
    enforced by the Information Commissioner's Office?
- source_sentence: Data Lineage View Data Quality View Asset and Data Discovery View
    Data Access Intelligence & Governance View Data Privacy Automation View Sensitive
    Data Intelligence View Data Flow Intelligence & Governance View Data Consent Automation
    View Data Security Posture Management View Data Breach Impact Analysis & Response
    View Data Catalog View Data Lineage View Solutions Technologies Regulations Roles
    Back Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP
    View Azure View Oracle View US California CCPA View US California CPRA View
  sentences:
  - What is the role of data privacy automation in ensuring data protection and compliance?
  - What risks does data security and the cloud help control for enterprises to safely
    harness their power?
  - What is the term for the right to delete personal data upon request, also known
    as 'the right to be forgotten', and what are the other data protection rights
    under GDPR?
- source_sentence: Consent of an individual is valid if it is reasonable to expect
    that an individual to whom the organization’s activities are directed would understand
    the nature, purpose, and consequences of the collection, use, or disclosure of
    the personal information to which they are consenting. The information must be
    provided in manageable and easily accessible ways to data subjects and data subjects
    must be allowed to withdraw consent. If there is a use or disclosure a data subject
    would not reasonably expect to be occurring, such as certain sharing of information
    with a third party or the tracking of location, express consent would likely be
    required. However, the data subject’s consent may not be required for certain
    data processing activities such as when the collection is “clearly” in the interests
    of the individual and consent cannot be obtained in a timely way, data is being
    collected in the course of employment, journalistic, is already publicly available,
    information is being collected for the detection and prevention of fraud or for
  sentences:
  - How should information be provided to data subjects in manageable and easily accessible
    ways?
  - What are the obligations and requirements for businesses under China's Personal
    Information Protection Law?
  - Which state, following California, Virginia, and Colorado, recently passed privacy
    legislation like the VCDPA?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.4020618556701031
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5567010309278351
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6804123711340206
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7525773195876289
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4020618556701031
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1855670103092783
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1360824742268041
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07525773195876287
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4020618556701031
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5567010309278351
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6804123711340206
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7525773195876289
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5649836192344125
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5059687448862709
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5167362215588647
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.3917525773195876
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5876288659793815
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6288659793814433
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7525773195876289
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3917525773195876
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19587628865979378
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12577319587628866
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07525773195876287
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3917525773195876
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5876288659793815
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6288659793814433
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7525773195876289
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5625195371806965
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5031173294059894
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5141611082081141
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.38144329896907214
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5773195876288659
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6391752577319587
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.711340206185567
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38144329896907214
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1924398625429553
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12783505154639174
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07113402061855668
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.38144329896907214
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5773195876288659
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6391752577319587
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.711340206185567
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5460935382949205
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.49311078383243345
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5067772343986099
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v19")
# Run inference
sentences = [
    'Consent of an individual is valid if it is reasonable to expect that an individual to whom the organization’s activities are directed would understand the nature, purpose, and consequences of the collection, use, or disclosure of the personal information to which they are consenting. The information must be provided in manageable and easily accessible ways to data subjects and data subjects must be allowed to withdraw consent. If there is a use or disclosure a data subject would not reasonably expect to be occurring, such as certain sharing of information with a third party or the tracking of location, express consent would likely be required. However, the data subject’s consent may not be required for certain data processing activities such as when the collection is “clearly” in the interests of the individual and consent cannot be obtained in a timely way, data is being collected in the course of employment, journalistic, is already publicly available, information is being collected for the detection and prevention of fraud or for',
    'How should information be provided to data subjects in manageable and easily accessible ways?',
    'Which state, following California, Virginia, and Colorado, recently passed privacy legislation like the VCDPA?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.4021     |
| cosine_accuracy@3   | 0.5567     |
| cosine_accuracy@5   | 0.6804     |
| cosine_accuracy@10  | 0.7526     |
| cosine_precision@1  | 0.4021     |
| cosine_precision@3  | 0.1856     |
| cosine_precision@5  | 0.1361     |
| cosine_precision@10 | 0.0753     |
| cosine_recall@1     | 0.4021     |
| cosine_recall@3     | 0.5567     |
| cosine_recall@5     | 0.6804     |
| cosine_recall@10    | 0.7526     |
| cosine_ndcg@10      | 0.565      |
| cosine_mrr@10       | 0.506      |
| **cosine_map@100**  | **0.5167** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3918     |
| cosine_accuracy@3   | 0.5876     |
| cosine_accuracy@5   | 0.6289     |
| cosine_accuracy@10  | 0.7526     |
| cosine_precision@1  | 0.3918     |
| cosine_precision@3  | 0.1959     |
| cosine_precision@5  | 0.1258     |
| cosine_precision@10 | 0.0753     |
| cosine_recall@1     | 0.3918     |
| cosine_recall@3     | 0.5876     |
| cosine_recall@5     | 0.6289     |
| cosine_recall@10    | 0.7526     |
| cosine_ndcg@10      | 0.5625     |
| cosine_mrr@10       | 0.5031     |
| **cosine_map@100**  | **0.5142** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3814     |
| cosine_accuracy@3   | 0.5773     |
| cosine_accuracy@5   | 0.6392     |
| cosine_accuracy@10  | 0.7113     |
| cosine_precision@1  | 0.3814     |
| cosine_precision@3  | 0.1924     |
| cosine_precision@5  | 0.1278     |
| cosine_precision@10 | 0.0711     |
| cosine_recall@1     | 0.3814     |
| cosine_recall@3     | 0.5773     |
| cosine_recall@5     | 0.6392     |
| cosine_recall@10    | 0.7113     |
| cosine_ndcg@10      | 0.5461     |
| cosine_mrr@10       | 0.4931     |
| **cosine_map@100**  | **0.5068** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 882 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                              |
  |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                              |
  | details | <ul><li>min: 18 tokens</li><li>mean: 227.32 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 21.98 tokens</li><li>max: 102 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
  | <code>Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>What is the purpose of the Data Command Center?</code>                                              |
  | <code>data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>What is the requirement for notifying the data subject of any extension under GDPR and PDPL?</code> |
  | <code>Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of,  PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its</code> | <code>What is the purpose of Third Party & Cookie Consent in data automation and security?</code>         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.3571  | 10     | 4.0517        | -                      | -                      | -                      |
| 0.7143  | 20     | 2.5778        | -                      | -                      | -                      |
| 1.0     | 28     | -             | 0.5304                 | 0.5224                 | 0.5234                 |
| 1.0714  | 30     | 2.1161        | -                      | -                      | -                      |
| 1.4286  | 40     | 1.5394        | -                      | -                      | -                      |
| 1.7857  | 50     | 1.5162        | -                      | -                      | -                      |
| **2.0** | **56** | **-**         | **0.5412**             | **0.5382**             | **0.5185**             |
| 2.1429  | 60     | 1.202         | -                      | -                      | -                      |
| 2.5     | 70     | 1.0456        | -                      | -                      | -                      |
| 2.8571  | 80     | 1.1341        | -                      | -                      | -                      |
| 3.0     | 84     | -             | 0.5340                 | 0.5554                 | 0.5498                 |
| 3.2143  | 90     | 0.8724        | -                      | -                      | -                      |
| 3.5714  | 100    | 0.932         | -                      | -                      | -                      |
| 3.9286  | 110    | 0.9548        | -                      | -                      | -                      |
| 4.0     | 112    | -             | 0.5296                 | 0.5487                 | 0.5491                 |
| 0.3571  | 10     | 0.9958        | -                      | -                      | -                      |
| 0.7143  | 20     | 0.8264        | -                      | -                      | -                      |
| 1.0     | 28     | -             | 0.5155                 | 0.5250                 | 0.5269                 |
| 1.0714  | 30     | 0.7969        | -                      | -                      | -                      |
| 1.4286  | 40     | 0.6244        | -                      | -                      | -                      |
| 1.7857  | 50     | 0.6368        | -                      | -                      | -                      |
| **2.0** | **56** | **-**         | **0.5034**             | **0.5314**             | **0.5233**             |
| 2.1429  | 60     | 0.4748        | -                      | -                      | -                      |
| 2.5     | 70     | 0.4037        | -                      | -                      | -                      |
| 2.8571  | 80     | 0.4615        | -                      | -                      | -                      |
| 3.0     | 84     | -             | 0.5079                 | 0.5145                 | 0.5155                 |
| 3.2143  | 90     | 0.3148        | -                      | -                      | -                      |
| 3.5714  | 100    | 0.4142        | -                      | -                      | -                      |
| 3.9286  | 110    | 0.366         | -                      | -                      | -                      |
| 4.0     | 112    | -             | 0.5068                 | 0.5142                 | 0.5167                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->