metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: Our effective tax rate for 2023 was 18%.
sentences:
- What was the effective tax rate in fiscal 2023?
- What are some key goals of the corporation related to climate change?
- In which item is Note 10, discussing Legal Proceedings, included?
- source_sentence: What kind of services does Equifax provide?
sentences:
- What is the primary business of Equifax Inc.?
- What new production locations and vehicle models were active in 2023?
- >-
How much did AbbVie's gross margin percentage decrease in 2023 compared
to 2022?
- source_sentence: What was the effective tax rate in 2023?
sentences:
- What was the effective tax rate for fiscal year 2023?
- How long do Enterprise Agreements last and who are they designed for?
- What was Ellen Copaken's professional role prior to joining AMC?
- source_sentence: What former roles has Indra K. Nooyi held?
sentences:
- Indra K. Nooyi | 68 | Former Chair and CEO, PepsiCo, Inc.
- What is the valuation allowance of the company as of January 31, 2023?
- What was the effective tax rate for fiscal 2023?
- source_sentence: The net earnings margin in 2023 was 6.0%.
sentences:
- What was the net earnings margin in 2023?
- What caused the slight decline in Workforce Solutions revenue in 2023?
- >-
What does it mean when an item is 'incorporated by reference' in a
document?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7257142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8514285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8828571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7257142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28380952380952373
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7257142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8514285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8828571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8232947560533131
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7937823129251699
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7965741135480359
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7257142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8542857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8757142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7257142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28476190476190477
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17514285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7257142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8542857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8757142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8215329948771338
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7927670068027208
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7959270152786184
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.71
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.85
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.71
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2833333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.71
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.85
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8139428654682047
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7832817460317458
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7863373038655584
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6814285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8157142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6814285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2719047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6814285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8157142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7914768113496716
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7581626984126983
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7616459239835561
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8071428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.87
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16142857142857142
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8071428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.87
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.763736298979858
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7301014739229026
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7342830326633573
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("MugheesAwan11/bge-base-financial-matryoshka")
sentences = [
'The net earnings margin in 2023 was 6.0%.',
'What was the net earnings margin in 2023?',
'What caused the slight decline in Workforce Solutions revenue in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7257 |
cosine_accuracy@3 |
0.8514 |
cosine_accuracy@5 |
0.8829 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.7257 |
cosine_precision@3 |
0.2838 |
cosine_precision@5 |
0.1766 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.7257 |
cosine_recall@3 |
0.8514 |
cosine_recall@5 |
0.8829 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8233 |
cosine_mrr@10 |
0.7938 |
cosine_map@100 |
0.7966 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7257 |
cosine_accuracy@3 |
0.8543 |
cosine_accuracy@5 |
0.8757 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.7257 |
cosine_precision@3 |
0.2848 |
cosine_precision@5 |
0.1751 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.7257 |
cosine_recall@3 |
0.8543 |
cosine_recall@5 |
0.8757 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.8215 |
cosine_mrr@10 |
0.7928 |
cosine_map@100 |
0.7959 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.71 |
cosine_accuracy@3 |
0.85 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.9086 |
cosine_precision@1 |
0.71 |
cosine_precision@3 |
0.2833 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.0909 |
cosine_recall@1 |
0.71 |
cosine_recall@3 |
0.85 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.9086 |
cosine_ndcg@10 |
0.8139 |
cosine_mrr@10 |
0.7833 |
cosine_map@100 |
0.7863 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6814 |
cosine_accuracy@3 |
0.8157 |
cosine_accuracy@5 |
0.8586 |
cosine_accuracy@10 |
0.8943 |
cosine_precision@1 |
0.6814 |
cosine_precision@3 |
0.2719 |
cosine_precision@5 |
0.1717 |
cosine_precision@10 |
0.0894 |
cosine_recall@1 |
0.6814 |
cosine_recall@3 |
0.8157 |
cosine_recall@5 |
0.8586 |
cosine_recall@10 |
0.8943 |
cosine_ndcg@10 |
0.7915 |
cosine_mrr@10 |
0.7582 |
cosine_map@100 |
0.7616 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.66 |
cosine_accuracy@3 |
0.78 |
cosine_accuracy@5 |
0.8071 |
cosine_accuracy@10 |
0.87 |
cosine_precision@1 |
0.66 |
cosine_precision@3 |
0.26 |
cosine_precision@5 |
0.1614 |
cosine_precision@10 |
0.087 |
cosine_recall@1 |
0.66 |
cosine_recall@3 |
0.78 |
cosine_recall@5 |
0.8071 |
cosine_recall@10 |
0.87 |
cosine_ndcg@10 |
0.7637 |
cosine_mrr@10 |
0.7301 |
cosine_map@100 |
0.7343 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 46.61 tokens
- max: 289 tokens
|
- min: 8 tokens
- mean: 20.58 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Insurance Medical Membership at December 31, 2020 for Florida includes Individual Medicare Advantage (851.3 thousand), Group Medicare Advantage (9.1 thousand), Medicare stand-alone PDP (131.9 thousand), Medicare Supplement (17.5 thousand), State-based contracts and Other (656.6 thousand), Fully-insured commercial Group (73.8 thousand), ASO (24.5 thousand), totaling 1,764.7 thousand members. |
How is Florida's total insurance medical membership detailed in the data for December 31, 2023? |
For the year ended December 31, 2023, the total provision for income taxes was $836 million, which includes both current and deferred tax amounts. |
What was the total provision for income taxes at the end of 2023? |
Pursuant to the IRA, under Sections 48, 48E and 25D of the Internal Revenue Code (“IRC”), standalone energy storage technology is eligible for a tax credit between 6% and 50% of qualified expenditures, regardless of the source of energy, which may be claimed by our customers for storage systems they purchase or by us for arrangements where we own the systems. |
Under what sections of the Internal Revenue Code can standalone energy storage technology receive a tax credit? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 2
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 2
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.4587 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7544 |
0.7722 |
0.7809 |
0.7118 |
0.7804 |
1.6244 |
20 |
0.6938 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7586 |
0.779 |
0.7876 |
0.7197 |
0.785 |
0.8122 |
10 |
0.5238 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7602 |
0.7815 |
0.7928 |
0.7285 |
0.7942 |
1.6244 |
20 |
0.4172 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7616 |
0.7863 |
0.7959 |
0.7343 |
0.7966 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}