Muennighoff's picture
Add MTEB eval results
90780e8
|
raw
history blame
96.7 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
model-index:
  - name: SGPT-125M-weightedmean-nli-bitfit
    results:
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
        metrics:
          - type: v_measure
            value: 0.28301902023313874
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
        metrics:
          - type: cos_sim_pearson
            value: 0.76401935081936
          - type: cos_sim_spearman
            value: 0.7723446219694267
          - type: euclidean_pearson
            value: 0.7461017160439877
          - type: euclidean_spearman
            value: 0.7585871531365609
          - type: manhattan_pearson
            value: 0.7483034779539725
          - type: manhattan_spearman
            value: 0.759594899358843
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
        metrics:
          - type: v_measure
            value: 0.3474248247787077
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
        metrics:
          - type: accuracy
            value: 0.35098
          - type: f1
            value: 0.34732656514357263
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
        metrics:
          - type: accuracy
            value: 0.24516
          - type: f1
            value: 0.2421748200448397
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
        metrics:
          - type: accuracy
            value: 0.29097999999999996
          - type: f1
            value: 0.28620040162757093
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
        metrics:
          - type: accuracy
            value: 0.27396
          - type: f1
            value: 0.27146888644986283
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
        metrics:
          - type: accuracy
            value: 0.21724000000000002
          - type: f1
            value: 0.2137230564276654
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
        metrics:
          - type: accuracy
            value: 0.23975999999999997
          - type: f1
            value: 0.23741137981755484
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
        metrics:
          - type: accuracy
            value: 0.010960334029227558
          - type: f1
            value: 0.01092553931802366
          - type: precision
            value: 0.010908141962421711
          - type: recall
            value: 0.010960334029227558
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
        metrics:
          - type: accuracy
            value: 0.00022011886418666079
          - type: f1
            value: 0.00022011886418666079
          - type: precision
            value: 0.00022011886418666079
          - type: recall
            value: 0.00022011886418666079
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
        metrics:
          - type: accuracy
            value: 0
          - type: f1
            value: 0
          - type: precision
            value: 0
          - type: recall
            value: 0
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
        metrics:
          - type: accuracy
            value: 0
          - type: f1
            value: 0
          - type: precision
            value: 0
          - type: recall
            value: 0
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
        metrics:
          - type: accuracy
            value: 0.8151846785225718
          - type: f1
            value: 0.81648869152345
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
        metrics:
          - type: accuracy
            value: 0.6037475345167653
          - type: f1
            value: 0.5845264937551703
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
        metrics:
          - type: accuracy
            value: 0.6736824549699799
          - type: f1
            value: 0.6535927434998515
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
        metrics:
          - type: accuracy
            value: 0.6312871907297212
          - type: f1
            value: 0.6137620329272278
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
        metrics:
          - type: accuracy
            value: 0.47045536034420943
          - type: f1
            value: 0.46203899126445613
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
        metrics:
          - type: accuracy
            value: 0.5228209764918625
          - type: f1
            value: 0.5075489206473579
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
        metrics:
          - type: map_at_1
            value: 0.0808
          - type: map_at_10
            value: 0.11691
          - type: map_at_100
            value: 0.12312
          - type: map_at_1000
            value: 0.12439
          - type: map_at_3
            value: 0.10344
          - type: map_at_5
            value: 0.10996
          - type: ndcg_at_1
            value: 0.10697
          - type: ndcg_at_10
            value: 0.1448
          - type: ndcg_at_100
            value: 0.18161
          - type: ndcg_at_1000
            value: 0.21886
          - type: ndcg_at_3
            value: 0.11872
          - type: ndcg_at_5
            value: 0.12834
          - type: precision_at_1
            value: 0.10697
          - type: precision_at_10
            value: 0.02811
          - type: precision_at_100
            value: 0.00551
          - type: precision_at_1000
            value: 0.00102
          - type: precision_at_3
            value: 0.05804
          - type: precision_at_5
            value: 0.04154
          - type: recall_at_1
            value: 0.0808
          - type: recall_at_10
            value: 0.20235
          - type: recall_at_100
            value: 0.37526
          - type: recall_at_1000
            value: 0.65106
          - type: recall_at_3
            value: 0.12804
          - type: recall_at_5
            value: 0.15499
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
        metrics:
          - type: accuracy
            value: 0.6588059701492537
          - type: ap
            value: 0.28685493163579784
          - type: f1
            value: 0.5979951005816335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
        metrics:
          - type: accuracy
            value: 0.5907922912205568
          - type: ap
            value: 0.7391887421019034
          - type: f1
            value: 0.566316368658711
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
        metrics:
          - type: accuracy
            value: 0.6491754122938531
          - type: ap
            value: 0.16360681214864226
          - type: f1
            value: 0.5312659206152377
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
        metrics:
          - type: accuracy
            value: 0.56423982869379
          - type: ap
            value: 0.12143003571907898
          - type: f1
            value: 0.45763637779874716
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
        metrics:
          - type: map_at_1
            value: 0.06496
          - type: map_at_10
            value: 0.09243
          - type: map_at_100
            value: 0.09841
          - type: map_at_1000
            value: 0.09946
          - type: map_at_3
            value: 0.08395
          - type: map_at_5
            value: 0.08872
          - type: ndcg_at_1
            value: 0.08224
          - type: ndcg_at_10
            value: 0.1124
          - type: ndcg_at_100
            value: 0.14525
          - type: ndcg_at_1000
            value: 0.17686
          - type: ndcg_at_3
            value: 0.09617
          - type: ndcg_at_5
            value: 0.1037
          - type: precision_at_1
            value: 0.08224
          - type: precision_at_10
            value: 0.02082
          - type: precision_at_100
            value: 0.00443
          - type: precision_at_1000
            value: 0.00085
          - type: precision_at_3
            value: 0.04623
          - type: precision_at_5
            value: 0.03331
          - type: recall_at_1
            value: 0.06496
          - type: recall_at_10
            value: 0.1531
          - type: recall_at_100
            value: 0.3068
          - type: recall_at_1000
            value: 0.54335
          - type: recall_at_3
            value: 0.10691
          - type: recall_at_5
            value: 0.12688
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
        metrics:
          - type: map
            value: 0.2926934104146833
          - type: mrr
            value: 0.3013214087687572
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
        metrics:
          - type: map_at_1
            value: 0.01227
          - type: map_at_10
            value: 0.03081
          - type: map_at_100
            value: 0.04104
          - type: map_at_1000
            value: 0.04989
          - type: map_at_3
            value: 0.02221
          - type: map_at_5
            value: 0.02535
          - type: ndcg_at_1
            value: 0.15015
          - type: ndcg_at_10
            value: 0.11805
          - type: ndcg_at_100
            value: 0.12452
          - type: ndcg_at_1000
            value: 0.22284
          - type: ndcg_at_3
            value: 0.13257
          - type: ndcg_at_5
            value: 0.12199
          - type: precision_at_1
            value: 0.16409
          - type: precision_at_10
            value: 0.09102
          - type: precision_at_100
            value: 0.03678
          - type: precision_at_1000
            value: 0.01609
          - type: precision_at_3
            value: 0.12797
          - type: precision_at_5
            value: 0.10464
          - type: recall_at_1
            value: 0.01227
          - type: recall_at_10
            value: 0.05838
          - type: recall_at_100
            value: 0.15716
          - type: recall_at_1000
            value: 0.48837
          - type: recall_at_3
            value: 0.02828
          - type: recall_at_5
            value: 0.03697
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
        metrics:
          - type: map_at_1
            value: 0.0288
          - type: map_at_10
            value: 0.04914
          - type: map_at_100
            value: 0.05459
          - type: map_at_1000
            value: 0.05538
          - type: map_at_3
            value: 0.04087
          - type: map_at_5
            value: 0.04518
          - type: ndcg_at_1
            value: 0.02937
          - type: ndcg_at_10
            value: 0.06273
          - type: ndcg_at_100
            value: 0.09426
          - type: ndcg_at_1000
            value: 0.12033
          - type: ndcg_at_3
            value: 0.04513
          - type: ndcg_at_5
            value: 0.05292
          - type: precision_at_1
            value: 0.02937
          - type: precision_at_10
            value: 0.01089
          - type: precision_at_100
            value: 0.00277
          - type: precision_at_1000
            value: 0.00051
          - type: precision_at_3
            value: 0.01929
          - type: precision_at_5
            value: 0.01547
          - type: recall_at_1
            value: 0.0288
          - type: recall_at_10
            value: 0.10578
          - type: recall_at_100
            value: 0.26267
          - type: recall_at_1000
            value: 0.4759
          - type: recall_at_3
            value: 0.05673
          - type: recall_at_5
            value: 0.07545
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
        metrics:
          - type: map_at_1
            value: 0.13843
          - type: map_at_10
            value: 0.17496
          - type: map_at_100
            value: 0.18304
          - type: map_at_1000
            value: 0.18426
          - type: map_at_3
            value: 0.16225
          - type: map_at_5
            value: 0.1683
          - type: ndcg_at_1
            value: 0.16698
          - type: ndcg_at_10
            value: 0.20301
          - type: ndcg_at_100
            value: 0.24523
          - type: ndcg_at_1000
            value: 0.27784
          - type: ndcg_at_3
            value: 0.17822
          - type: ndcg_at_5
            value: 0.18794
          - type: precision_at_1
            value: 0.16698
          - type: precision_at_10
            value: 0.03358
          - type: precision_at_100
            value: 0.00618
          - type: precision_at_1000
            value: 0.00101
          - type: precision_at_3
            value: 0.07898
          - type: precision_at_5
            value: 0.05429
          - type: recall_at_1
            value: 0.13843
          - type: recall_at_10
            value: 0.25888
          - type: recall_at_100
            value: 0.45028
          - type: recall_at_1000
            value: 0.68991
          - type: recall_at_3
            value: 0.18851
          - type: recall_at_5
            value: 0.21462
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
        metrics:
          - type: cos_sim_pearson
            value: 0.8020938796088339
          - type: cos_sim_spearman
            value: 0.6916914010333395
          - type: euclidean_pearson
            value: 0.7933415250097545
          - type: euclidean_spearman
            value: 0.7146707320292746
          - type: manhattan_pearson
            value: 0.7973669837981976
          - type: manhattan_spearman
            value: 0.7187919511134903
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
        metrics:
          - type: v_measure
            value: 0.4459127540530939
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
        metrics:
          - type: map
            value: 0.6835710819755543
          - type: mrr
            value: 0.8805442832403617
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
        metrics:
          - type: map_at_1
            value: 0.13442
          - type: map_at_10
            value: 0.24275
          - type: map_at_100
            value: 0.25588
          - type: map_at_1000
            value: 0.25659
          - type: map_at_3
            value: 0.20092
          - type: map_at_5
            value: 0.2244
          - type: ndcg_at_1
            value: 0.13442
          - type: ndcg_at_10
            value: 0.3104
          - type: ndcg_at_100
            value: 0.37529
          - type: ndcg_at_1000
            value: 0.39348
          - type: ndcg_at_3
            value: 0.22342
          - type: ndcg_at_5
            value: 0.26596
          - type: precision_at_1
            value: 0.13442
          - type: precision_at_10
            value: 0.05299
          - type: precision_at_100
            value: 0.00836
          - type: precision_at_1000
            value: 0.00098
          - type: precision_at_3
            value: 0.09625
          - type: precision_at_5
            value: 0.07852
          - type: recall_at_1
            value: 0.13442
          - type: recall_at_10
            value: 0.52987
          - type: recall_at_100
            value: 0.83642
          - type: recall_at_1000
            value: 0.97795
          - type: recall_at_3
            value: 0.28876
          - type: recall_at_5
            value: 0.3926
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
        metrics:
          - type: map
            value: 0.5263439984994702
          - type: mrr
            value: 0.6575704612408213
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
        metrics:
          - type: accuracy
            value: 0.5482173174872665
          - type: f1
            value: 0.5514729314789282
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
        metrics:
          - type: v_measure
            value: 0.2467870651472156
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
        metrics:
          - type: map_at_1
            value: 0.09676
          - type: map_at_10
            value: 0.13351
          - type: map_at_100
            value: 0.13919
          - type: map_at_1000
            value: 0.1401
          - type: map_at_3
            value: 0.12223
          - type: map_at_5
            value: 0.12812
          - type: ndcg_at_1
            value: 0.19352
          - type: ndcg_at_10
            value: 0.17727
          - type: ndcg_at_100
            value: 0.20837
          - type: ndcg_at_1000
            value: 0.23412
          - type: ndcg_at_3
            value: 0.15317
          - type: ndcg_at_5
            value: 0.16436
          - type: precision_at_1
            value: 0.19352
          - type: precision_at_10
            value: 0.03993
          - type: precision_at_100
            value: 0.00651
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0.09669
          - type: precision_at_5
            value: 0.0669
          - type: recall_at_1
            value: 0.09676
          - type: recall_at_10
            value: 0.19966
          - type: recall_at_100
            value: 0.32573
          - type: recall_at_1000
            value: 0.49905
          - type: recall_at_3
            value: 0.14504
          - type: recall_at_5
            value: 0.16725
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
        metrics:
          - type: map_at_1
            value: 0.00645
          - type: map_at_10
            value: 0.04116
          - type: map_at_100
            value: 0.07527
          - type: map_at_1000
            value: 0.08678
          - type: map_at_3
            value: 0.01602
          - type: map_at_5
            value: 0.026
          - type: ndcg_at_1
            value: 0.10204
          - type: ndcg_at_10
            value: 0.1227
          - type: ndcg_at_100
            value: 0.22461
          - type: ndcg_at_1000
            value: 0.33543
          - type: ndcg_at_3
            value: 0.09982
          - type: ndcg_at_5
            value: 0.11498
          - type: precision_at_1
            value: 0.10204
          - type: precision_at_10
            value: 0.12245
          - type: precision_at_100
            value: 0.05286
          - type: precision_at_1000
            value: 0.01263
          - type: precision_at_3
            value: 0.10884
          - type: precision_at_5
            value: 0.13061
          - type: recall_at_1
            value: 0.00645
          - type: recall_at_10
            value: 0.08996
          - type: recall_at_100
            value: 0.33666
          - type: recall_at_1000
            value: 0.67704
          - type: recall_at_3
            value: 0.02504
          - type: recall_at_5
            value: 0.0495
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
        metrics:
          - type: map_at_1
            value: 0.18222
          - type: map_at_10
            value: 0.24506
          - type: map_at_100
            value: 0.25611
          - type: map_at_1000
            value: 0.25758
          - type: map_at_3
            value: 0.22265
          - type: map_at_5
            value: 0.23698
          - type: ndcg_at_1
            value: 0.23033
          - type: ndcg_at_10
            value: 0.28719
          - type: ndcg_at_100
            value: 0.33748
          - type: ndcg_at_1000
            value: 0.37056
          - type: ndcg_at_3
            value: 0.2524
          - type: ndcg_at_5
            value: 0.2712
          - type: precision_at_1
            value: 0.23033
          - type: precision_at_10
            value: 0.05408
          - type: precision_at_100
            value: 0.01004
          - type: precision_at_1000
            value: 0.00158
          - type: precision_at_3
            value: 0.11874
          - type: precision_at_5
            value: 0.08927
          - type: recall_at_1
            value: 0.18222
          - type: recall_at_10
            value: 0.36355
          - type: recall_at_100
            value: 0.58724
          - type: recall_at_1000
            value: 0.81335
          - type: recall_at_3
            value: 0.26334
          - type: recall_at_5
            value: 0.314
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
        metrics:
          - type: cos_sim_pearson
            value: 0.3056303767714449
          - type: cos_sim_spearman
            value: 0.30256847004390486
          - type: dot_pearson
            value: 0.29453520030995006
          - type: dot_spearman
            value: 0.2956173255092678
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
        metrics:
          - type: accuracy
            value: 0.62896
          - type: ap
            value: 0.5847769349850157
          - type: f1
            value: 0.6267885149592086
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
        metrics:
          - type: cos_sim_pearson
            value: 0.7905293131911804
          - type: cos_sim_spearman
            value: 0.7973794782598049
          - type: euclidean_pearson
            value: 0.7817016171851057
          - type: euclidean_spearman
            value: 0.7876038607583106
          - type: manhattan_pearson
            value: 0.784994607532332
          - type: manhattan_spearman
            value: 0.7913026720132872
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
        metrics:
          - type: v_measure
            value: 0.24932123582259286
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
        metrics:
          - type: map_at_1
            value: 0.03714
          - type: map_at_10
            value: 0.06926
          - type: map_at_100
            value: 0.07879
          - type: map_at_1000
            value: 0.08032
          - type: map_at_3
            value: 0.05504
          - type: map_at_5
            value: 0.06357
          - type: ndcg_at_1
            value: 0.0886
          - type: ndcg_at_10
            value: 0.11007
          - type: ndcg_at_100
            value: 0.16154
          - type: ndcg_at_1000
            value: 0.19668
          - type: ndcg_at_3
            value: 0.08103
          - type: ndcg_at_5
            value: 0.09456
          - type: precision_at_1
            value: 0.0886
          - type: precision_at_10
            value: 0.0372
          - type: precision_at_100
            value: 0.00917
          - type: precision_at_1000
            value: 0.00156
          - type: precision_at_3
            value: 0.06254
          - type: precision_at_5
            value: 0.05381
          - type: recall_at_1
            value: 0.03714
          - type: recall_at_10
            value: 0.14382
          - type: recall_at_100
            value: 0.33166
          - type: recall_at_1000
            value: 0.53444
          - type: recall_at_3
            value: 0.07523
          - type: recall_at_5
            value: 0.1091
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
        metrics:
          - type: cos_sim_pearson
            value: 0.7535551963935667
          - type: cos_sim_spearman
            value: 0.7098892671568665
          - type: euclidean_pearson
            value: 0.7324467338564629
          - type: euclidean_spearman
            value: 0.7197533151639425
          - type: manhattan_pearson
            value: 0.7327765593599381
          - type: manhattan_spearman
            value: 0.722221421456084
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
        metrics:
          - type: map_at_1
            value: 0.12058
          - type: map_at_10
            value: 0.16051
          - type: map_at_100
            value: 0.16772
          - type: map_at_1000
            value: 0.16871
          - type: map_at_3
            value: 0.1478
          - type: map_at_5
            value: 0.155
          - type: ndcg_at_1
            value: 0.1535
          - type: ndcg_at_10
            value: 0.18804
          - type: ndcg_at_100
            value: 0.22346
          - type: ndcg_at_1000
            value: 0.25007
          - type: ndcg_at_3
            value: 0.16768
          - type: ndcg_at_5
            value: 0.17692
          - type: precision_at_1
            value: 0.1535
          - type: precision_at_10
            value: 0.0351
          - type: precision_at_100
            value: 0.00664
          - type: precision_at_1000
            value: 0.00111
          - type: precision_at_3
            value: 0.07983
          - type: precision_at_5
            value: 0.05656
          - type: recall_at_1
            value: 0.12058
          - type: recall_at_10
            value: 0.23644
          - type: recall_at_100
            value: 0.3976
          - type: recall_at_1000
            value: 0.5856
          - type: recall_at_3
            value: 0.17542
          - type: recall_at_5
            value: 0.20232
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
        metrics:
          - type: map_at_1
            value: 0.21183
          - type: map_at_10
            value: 0.289
          - type: map_at_100
            value: 0.29858
          - type: map_at_1000
            value: 0.29954
          - type: map_at_3
            value: 0.2658
          - type: map_at_5
            value: 0.27912
          - type: ndcg_at_1
            value: 0.24765
          - type: ndcg_at_10
            value: 0.3334
          - type: ndcg_at_100
            value: 0.37997
          - type: ndcg_at_1000
            value: 0.40416
          - type: ndcg_at_3
            value: 0.29045
          - type: ndcg_at_5
            value: 0.31121
          - type: precision_at_1
            value: 0.24765
          - type: precision_at_10
            value: 0.05599
          - type: precision_at_100
            value: 0.0087
          - type: precision_at_1000
            value: 0.00115
          - type: precision_at_3
            value: 0.13271
          - type: precision_at_5
            value: 0.09367
          - type: recall_at_1
            value: 0.21183
          - type: recall_at_10
            value: 0.43875
          - type: recall_at_100
            value: 0.65005
          - type: recall_at_1000
            value: 0.83017
          - type: recall_at_3
            value: 0.32232
          - type: recall_at_5
            value: 0.37308
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
        metrics:
          - type: map_at_1
            value: 0.03637
          - type: map_at_10
            value: 0.06084
          - type: map_at_100
            value: 0.06919
          - type: map_at_1000
            value: 0.07108
          - type: map_at_3
            value: 0.05071
          - type: map_at_5
            value: 0.05565
          - type: ndcg_at_1
            value: 0.07407
          - type: ndcg_at_10
            value: 0.0894
          - type: ndcg_at_100
            value: 0.13595
          - type: ndcg_at_1000
            value: 0.1829
          - type: ndcg_at_3
            value: 0.07393
          - type: ndcg_at_5
            value: 0.07854
          - type: precision_at_1
            value: 0.07407
          - type: precision_at_10
            value: 0.02778
          - type: precision_at_100
            value: 0.0075
          - type: precision_at_1000
            value: 0.00154
          - type: precision_at_3
            value: 0.05144
          - type: precision_at_5
            value: 0.03981
          - type: recall_at_1
            value: 0.03637
          - type: recall_at_10
            value: 0.11821
          - type: recall_at_100
            value: 0.3018
          - type: recall_at_1000
            value: 0.60207
          - type: recall_at_3
            value: 0.06839
          - type: recall_at_5
            value: 0.08649
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
        metrics:
          - type: accuracy
            value: 0.3779421654337593
          - type: f1
            value: 0.3681580701507746
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
        metrics:
          - type: accuracy
            value: 0.23722259583053126
          - type: f1
            value: 0.23235269695764274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
        metrics:
          - type: accuracy
            value: 0.2964021519838601
          - type: f1
            value: 0.28273175327650135
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
        metrics:
          - type: accuracy
            value: 0.39475453934095495
          - type: f1
            value: 0.39259973614151206
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
        metrics:
          - type: accuracy
            value: 0.26550100874243443
          - type: f1
            value: 0.25607924873522975
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
        metrics:
          - type: accuracy
            value: 0.38782784129119036
          - type: f1
            value: 0.3764180582626517
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
        metrics:
          - type: accuracy
            value: 0.43557498318762605
          - type: f1
            value: 0.4135305173800667
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
        metrics:
          - type: accuracy
            value: 0.4039340954942838
          - type: f1
            value: 0.38333932195289344
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
        metrics:
          - type: accuracy
            value: 0.3728648285137861
          - type: f1
            value: 0.36640059066802844
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
        metrics:
          - type: accuracy
            value: 0.5808002689979825
          - type: f1
            value: 0.5649243881660991
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
        metrics:
          - type: accuracy
            value: 0.411768661735037
          - type: f1
            value: 0.4066779962225799
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
        metrics:
          - type: accuracy
            value: 0.36422326832548757
          - type: f1
            value: 0.34644173804288503
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
        metrics:
          - type: accuracy
            value: 0.3875588433086752
          - type: f1
            value: 0.3726725894668694
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
        metrics:
          - type: accuracy
            value: 0.43671822461331533
          - type: f1
            value: 0.423518466245666
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
        metrics:
          - type: accuracy
            value: 0.3198049764626766
          - type: f1
            value: 0.3055792887280901
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
        metrics:
          - type: accuracy
            value: 0.2803967720242098
          - type: f1
            value: 0.28428418145508305
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
        metrics:
          - type: accuracy
            value: 0.3813718897108272
          - type: f1
            value: 0.3705740698819687
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
        metrics:
          - type: accuracy
            value: 0.2605245460659045
          - type: f1
            value: 0.2525483953344816
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
        metrics:
          - type: accuracy
            value: 0.41156691324815065
          - type: f1
            value: 0.40837150332476047
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
        metrics:
          - type: accuracy
            value: 0.38628110289172835
          - type: f1
            value: 0.37676919012460314
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
        metrics:
          - type: accuracy
            value: 0.440383322125084
          - type: f1
            value: 0.43772590108774556
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
        metrics:
          - type: accuracy
            value: 0.46207128446536655
          - type: f1
            value: 0.44666328759408236
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
        metrics:
          - type: accuracy
            value: 0.3760591795561533
          - type: f1
            value: 0.36581071742378013
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
        metrics:
          - type: accuracy
            value: 0.24472091459314052
          - type: f1
            value: 0.24238209697895607
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
        metrics:
          - type: accuracy
            value: 0.2623739071956961
          - type: f1
            value: 0.2537878315084505
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
        metrics:
          - type: accuracy
            value: 0.17831203765971754
          - type: f1
            value: 0.17275078420466344
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
        metrics:
          - type: accuracy
            value: 0.37266308002689974
          - type: f1
            value: 0.3692473791708214
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
        metrics:
          - type: accuracy
            value: 0.4093140551445864
          - type: f1
            value: 0.4082522788964197
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
        metrics:
          - type: accuracy
            value: 0.1788500336247478
          - type: f1
            value: 0.17621569082971816
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
        metrics:
          - type: accuracy
            value: 0.3297579018157364
          - type: f1
            value: 0.33402014633349664
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
        metrics:
          - type: accuracy
            value: 0.40911230665770015
          - type: f1
            value: 0.4009538559124075
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
        metrics:
          - type: accuracy
            value: 0.17834566240753194
          - type: f1
            value: 0.17006381849454313
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
        metrics:
          - type: accuracy
            value: 0.3947881640887693
          - type: f1
            value: 0.37819934317839304
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
        metrics:
          - type: accuracy
            value: 0.4176193678547412
          - type: f1
            value: 0.40281991759509694
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
        metrics:
          - type: accuracy
            value: 0.4261936785474109
          - type: f1
            value: 0.40836739146499046
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
        metrics:
          - type: accuracy
            value: 0.44542703429724273
          - type: f1
            value: 0.43452431642784484
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
        metrics:
          - type: accuracy
            value: 0.3996973772696705
          - type: f1
            value: 0.3874209466530094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
        metrics:
          - type: accuracy
            value: 0.37461331540013454
          - type: f1
            value: 0.3691132021821187
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
        metrics:
          - type: accuracy
            value: 0.3828850033624748
          - type: f1
            value: 0.3737259394049676
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
        metrics:
          - type: accuracy
            value: 0.4095494283792872
          - type: f1
            value: 0.3976770790286908
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
        metrics:
          - type: accuracy
            value: 0.4185272360457296
          - type: f1
            value: 0.4042848260365438
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
        metrics:
          - type: accuracy
            value: 0.3832885003362475
          - type: f1
            value: 0.3690334596675622
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
        metrics:
          - type: accuracy
            value: 0.19031607262945527
          - type: f1
            value: 0.18665103063257613
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
        metrics:
          - type: accuracy
            value: 0.1938466711499664
          - type: f1
            value: 0.19186399376652535
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
        metrics:
          - type: accuracy
            value: 0.34088769334229996
          - type: f1
            value: 0.3420383086009429
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
        metrics:
          - type: accuracy
            value: 0.40285810356422325
          - type: f1
            value: 0.39361500249640413
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
        metrics:
          - type: accuracy
            value: 0.38860121049092133
          - type: f1
            value: 0.3781916859627235
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
        metrics:
          - type: accuracy
            value: 0.27834566240753195
          - type: f1
            value: 0.26898389386106486
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
        metrics:
          - type: accuracy
            value: 0.38705447209145927
          - type: f1
            value: 0.3828002644202441
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
        metrics:
          - type: accuracy
            value: 0.45780094149293876
          - type: f1
            value: 0.4421526778674136
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
        metrics:
          - type: accuracy
            value: 0.4232010759919301
          - type: f1
            value: 0.4225772977490916
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
        metrics:
          - type: accuracy
            value: 0.74938225
          - type: ap
            value: 0.6958187110320567
          - type: f1
            value: 0.7472744058439321
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
        metrics:
          - type: map_at_1
            value: 0.01764
          - type: map_at_10
            value: 0.0386
          - type: map_at_100
            value: 0.05457
          - type: map_at_1000
            value: 0.05938
          - type: map_at_3
            value: 0.02667
          - type: map_at_5
            value: 0.0322
          - type: ndcg_at_1
            value: 0.14
          - type: ndcg_at_10
            value: 0.10868
          - type: ndcg_at_100
            value: 0.12866
          - type: ndcg_at_1000
            value: 0.1743
          - type: ndcg_at_3
            value: 0.11943
          - type: ndcg_at_5
            value: 0.1166
          - type: precision_at_1
            value: 0.1925
          - type: precision_at_10
            value: 0.10275
          - type: precision_at_100
            value: 0.03527
          - type: precision_at_1000
            value: 0.00912
          - type: precision_at_3
            value: 0.14917
          - type: precision_at_5
            value: 0.135
          - type: recall_at_1
            value: 0.01764
          - type: recall_at_10
            value: 0.06609
          - type: recall_at_100
            value: 0.17616
          - type: recall_at_1000
            value: 0.33085
          - type: recall_at_3
            value: 0.03115
          - type: recall_at_5
            value: 0.04605
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
        metrics:
          - type: map_at_1
            value: 0.11497
          - type: map_at_10
            value: 0.15744
          - type: map_at_100
            value: 0.163
          - type: map_at_1000
            value: 0.16365
          - type: map_at_3
            value: 0.1444
          - type: map_at_5
            value: 0.1518
          - type: ndcg_at_1
            value: 0.12346
          - type: ndcg_at_10
            value: 0.18399
          - type: ndcg_at_100
            value: 0.21399
          - type: ndcg_at_1000
            value: 0.23442
          - type: ndcg_at_3
            value: 0.15695
          - type: ndcg_at_5
            value: 0.17027
          - type: precision_at_1
            value: 0.12346
          - type: precision_at_10
            value: 0.02798
          - type: precision_at_100
            value: 0.00445
          - type: precision_at_1000
            value: 0.00063
          - type: precision_at_3
            value: 0.06586
          - type: precision_at_5
            value: 0.04665
          - type: recall_at_1
            value: 0.11497
          - type: recall_at_10
            value: 0.25636
          - type: recall_at_100
            value: 0.39894
          - type: recall_at_1000
            value: 0.56181
          - type: recall_at_3
            value: 0.18273
          - type: recall_at_5
            value: 0.21474
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
        metrics:
          - type: map_at_1
            value: 0.12598
          - type: map_at_10
            value: 0.17304
          - type: map_at_100
            value: 0.18209
          - type: map_at_1000
            value: 0.18328
          - type: map_at_3
            value: 0.15784
          - type: map_at_5
            value: 0.1667
          - type: ndcg_at_1
            value: 0.15868
          - type: ndcg_at_10
            value: 0.20623
          - type: ndcg_at_100
            value: 0.25093
          - type: ndcg_at_1000
            value: 0.28498
          - type: ndcg_at_3
            value: 0.17912
          - type: ndcg_at_5
            value: 0.19198
          - type: precision_at_1
            value: 0.15868
          - type: precision_at_10
            value: 0.03767
          - type: precision_at_100
            value: 0.00716
          - type: precision_at_1000
            value: 0.00118
          - type: precision_at_3
            value: 0.08638
          - type: precision_at_5
            value: 0.0621
          - type: recall_at_1
            value: 0.12598
          - type: recall_at_10
            value: 0.27144
          - type: recall_at_100
            value: 0.46817
          - type: recall_at_1000
            value: 0.71861
          - type: recall_at_3
            value: 0.19231
          - type: recall_at_5
            value: 0.22716
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
        metrics:
          - type: cos_sim_pearson
            value: 0.5917638344661753
          - type: cos_sim_spearman
            value: 0.5963676007113087
          - type: euclidean_pearson
            value: 0.5668753290255448
          - type: euclidean_spearman
            value: 0.5761328025857448
          - type: manhattan_pearson
            value: 0.5692312052723706
          - type: manhattan_spearman
            value: 0.5776774918418505
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
        metrics:
          - type: cos_sim_pearson
            value: 0.10322254716987457
          - type: cos_sim_spearman
            value: 0.110033092996862
          - type: euclidean_pearson
            value: 0.06006926471684402
          - type: euclidean_spearman
            value: 0.10972140246688376
          - type: manhattan_pearson
            value: 0.05933298751861177
          - type: manhattan_spearman
            value: 0.11030111585680233
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
        metrics:
          - type: cos_sim_pearson
            value: 0.4338031880545056
          - type: cos_sim_spearman
            value: 0.4305358201410913
          - type: euclidean_pearson
            value: 0.42723271963625525
          - type: euclidean_spearman
            value: 0.4255163899944477
          - type: manhattan_pearson
            value: 0.44015574997805873
          - type: manhattan_spearman
            value: 0.43124732216158546
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
        metrics:
          - type: cos_sim_pearson
            value: 0.042912905043631364
          - type: cos_sim_spearman
            value: 0.1491272748789348
          - type: euclidean_pearson
            value: 0.032855132112394485
          - type: euclidean_spearman
            value: 0.16575204463951024
          - type: manhattan_pearson
            value: 0.03239877672346581
          - type: manhattan_spearman
            value: 0.16841985772913856
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
        metrics:
          - type: cos_sim_pearson
            value: 0.041027394985558165
          - type: cos_sim_spearman
            value: 0.03818238576547375
          - type: euclidean_pearson
            value: 0.023181033496453556
          - type: euclidean_spearman
            value: 0.051826811802703564
          - type: manhattan_pearson
            value: 0.04800617926525645
          - type: manhattan_spearman
            value: 0.06738401400306251
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
        metrics:
          - type: cos_sim_pearson
            value: 0.0238765395226737
          - type: cos_sim_spearman
            value: 0.051738993911623274
          - type: euclidean_pearson
            value: 0.030710263954769824
          - type: euclidean_spearman
            value: 0.050492229090398195
          - type: manhattan_pearson
            value: 0.0378263141098617
          - type: manhattan_spearman
            value: 0.05042238232170212
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
        metrics:
          - type: cos_sim_pearson
            value: 0.07673549067267635
          - type: cos_sim_spearman
            value: 0.03363121525687889
          - type: euclidean_pearson
            value: 0.0464331702652217
          - type: euclidean_spearman
            value: 0.036129205171334326
          - type: manhattan_pearson
            value: 0.040112317360761963
          - type: manhattan_spearman
            value: 0.03233959766173701
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
        metrics:
          - type: cos_sim_pearson
            value: 0.0006167614416104335
          - type: cos_sim_spearman
            value: 0.06521685391703255
          - type: euclidean_pearson
            value: 0.048845725790690325
          - type: euclidean_spearman
            value: 0.0559058032900239
          - type: manhattan_pearson
            value: 0.06139838096573896
          - type: manhattan_spearman
            value: 0.050060884837066215
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
        metrics:
          - type: cos_sim_pearson
            value: 0.5319490347682836
          - type: cos_sim_spearman
            value: 0.5456055727079527
          - type: euclidean_pearson
            value: 0.5255574442039842
          - type: euclidean_spearman
            value: 0.5294640154371587
          - type: manhattan_pearson
            value: 0.532759930404542
          - type: manhattan_spearman
            value: 0.5317456150351015
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.5115115853012214
          - type: cos_sim_spearman
            value: 0.5392692508173665
          - type: euclidean_pearson
            value: 0.4455629287737235
          - type: euclidean_spearman
            value: 0.46222372143731383
          - type: manhattan_pearson
            value: 0.42831322151459006
          - type: manhattan_spearman
            value: 0.4570991764985799
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.30361948851267917
          - type: cos_sim_spearman
            value: 0.32739632941633834
          - type: euclidean_pearson
            value: 0.2983135800843496
          - type: euclidean_spearman
            value: 0.3111440600132692
          - type: manhattan_pearson
            value: 0.31264502938148286
          - type: manhattan_spearman
            value: 0.33311204075347495
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
        metrics:
          - type: cos_sim_pearson
            value: 0.3523883630335275
          - type: cos_sim_spearman
            value: 0.33677970820867037
          - type: euclidean_pearson
            value: 0.34878640693874546
          - type: euclidean_spearman
            value: 0.33525189235133496
          - type: manhattan_pearson
            value: 0.3422761246389947
          - type: manhattan_spearman
            value: 0.32713218497609176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.19809302548119545
          - type: cos_sim_spearman
            value: 0.205403702021155
          - type: euclidean_pearson
            value: 0.23006803962133016
          - type: euclidean_spearman
            value: 0.2296270653079511
          - type: manhattan_pearson
            value: 0.2540168317585851
          - type: manhattan_spearman
            value: 0.25421508137540866
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.20393500955410487
          - type: cos_sim_spearman
            value: 0.267057136930116
          - type: euclidean_pearson
            value: 0.18168376767724584
          - type: euclidean_spearman
            value: 0.19260826601517245
          - type: manhattan_pearson
            value: 0.18302619990671526
          - type: manhattan_spearman
            value: 0.194691037846159
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
        metrics:
          - type: cos_sim_pearson
            value: 0.36589199830751484
          - type: cos_sim_spearman
            value: 0.3598972209997404
          - type: euclidean_pearson
            value: 0.4104511254757421
          - type: euclidean_spearman
            value: 0.39322301680629834
          - type: manhattan_pearson
            value: 0.4136802503205308
          - type: manhattan_spearman
            value: 0.4076270030293609
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
        metrics:
          - type: cos_sim_pearson
            value: 0.26350936227950084
          - type: cos_sim_spearman
            value: 0.25108218032460344
          - type: euclidean_pearson
            value: 0.2861681094744849
          - type: euclidean_spearman
            value: 0.2735099020394359
          - type: manhattan_pearson
            value: 0.30527977072984513
          - type: manhattan_spearman
            value: 0.2640333999064081
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
        metrics:
          - type: cos_sim_pearson
            value: 0.20056269198600324
          - type: cos_sim_spearman
            value: 0.20939990379746756
          - type: euclidean_pearson
            value: 0.18942765438962197
          - type: euclidean_spearman
            value: 0.21709842967237447
          - type: manhattan_pearson
            value: 0.23643909798655122
          - type: manhattan_spearman
            value: 0.2358828328071473
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
        metrics:
          - type: cos_sim_pearson
            value: 0.19563740271419394
          - type: cos_sim_spearman
            value: 0.05634361698190111
          - type: euclidean_pearson
            value: 0.16833522619239474
          - type: euclidean_spearman
            value: 0.16903085094570333
          - type: manhattan_pearson
            value: 0.058053927126608146
          - type: manhattan_spearman
            value: 0.16903085094570333
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
        metrics:
          - type: accuracy
            value: 0.40245460659045057
          - type: f1
            value: 0.3879924050989544
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
        metrics:
          - type: accuracy
            value: 0.2568930733019502
          - type: f1
            value: 0.2548816627916271
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
        metrics:
          - type: accuracy
            value: 0.3239744451916611
          - type: f1
            value: 0.31863029579075774
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
        metrics:
          - type: accuracy
            value: 0.4053127101546738
          - type: f1
            value: 0.39707079033948933
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
        metrics:
          - type: accuracy
            value: 0.2723268325487559
          - type: f1
            value: 0.2644365328185879
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
        metrics:
          - type: accuracy
            value: 0.3869872225958305
          - type: f1
            value: 0.3655930387892567
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
        metrics:
          - type: accuracy
            value: 0.4475453934095494
          - type: f1
            value: 0.4287356484024154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
        metrics:
          - type: accuracy
            value: 0.41355077336919976
          - type: f1
            value: 0.3982365179458047
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
        metrics:
          - type: accuracy
            value: 0.3843981170141224
          - type: f1
            value: 0.3702538368296387
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
        metrics:
          - type: accuracy
            value: 0.6633826496301277
          - type: f1
            value: 0.6589634765029931
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
        metrics:
          - type: accuracy
            value: 0.4417955615332885
          - type: f1
            value: 0.4310228811620319
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
        metrics:
          - type: accuracy
            value: 0.3482851378614661
          - type: f1
            value: 0.33959524415028025
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
        metrics:
          - type: accuracy
            value: 0.40561533288500334
          - type: f1
            value: 0.38049390117336274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
        metrics:
          - type: accuracy
            value: 0.45917955615332884
          - type: f1
            value: 0.4465741971572902
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
        metrics:
          - type: accuracy
            value: 0.3208473436449227
          - type: f1
            value: 0.2953932929808133
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
        metrics:
          - type: accuracy
            value: 0.28369199731002015
          - type: f1
            value: 0.2752902837981212
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
        metrics:
          - type: accuracy
            value: 0.3949226630800269
          - type: f1
            value: 0.37327234047050406
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
        metrics:
          - type: accuracy
            value: 0.2590450571620713
          - type: f1
            value: 0.24547396574853445
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
        metrics:
          - type: accuracy
            value: 0.4095830531271016
          - type: f1
            value: 0.40177843177422223
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
        metrics:
          - type: accuracy
            value: 0.38564223268325487
          - type: f1
            value: 0.3735307758495248
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
        metrics:
          - type: accuracy
            value: 0.4658708809683928
          - type: f1
            value: 0.44103900526804984
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
        metrics:
          - type: accuracy
            value: 0.4624747814391393
          - type: f1
            value: 0.454107101796664
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
        metrics:
          - type: accuracy
            value: 0.396570275722932
          - type: f1
            value: 0.3882737576832412
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
        metrics:
          - type: accuracy
            value: 0.2527908540685945
          - type: f1
            value: 0.23662661686788491
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
        metrics:
          - type: accuracy
            value: 0.2897108271687962
          - type: f1
            value: 0.27195758324189245
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
        metrics:
          - type: accuracy
            value: 0.1927370544720915
          - type: f1
            value: 0.18694271924323635
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
        metrics:
          - type: accuracy
            value: 0.3572965702757229
          - type: f1
            value: 0.3438287006177308
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
        metrics:
          - type: accuracy
            value: 0.3957296570275723
          - type: f1
            value: 0.38074945140886923
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
        metrics:
          - type: accuracy
            value: 0.19895763281775386
          - type: f1
            value: 0.20009313648468288
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
        metrics:
          - type: accuracy
            value: 0.32431069266980495
          - type: f1
            value: 0.31395958664782575
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
        metrics:
          - type: accuracy
            value: 0.42323470073974445
          - type: f1
            value: 0.4081374026314701
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
        metrics:
          - type: accuracy
            value: 0.20864156018829857
          - type: f1
            value: 0.20409870408935435
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
        metrics:
          - type: accuracy
            value: 0.4047074646940148
          - type: f1
            value: 0.3919044149415904
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
        metrics:
          - type: accuracy
            value: 0.43591123066577
          - type: f1
            value: 0.4143420363064241
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
        metrics:
          - type: accuracy
            value: 0.41876260928043046
          - type: f1
            value: 0.4119211767666761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
        metrics:
          - type: accuracy
            value: 0.46308002689979827
          - type: f1
            value: 0.4525536730126799
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
        metrics:
          - type: accuracy
            value: 0.4252521856086079
          - type: f1
            value: 0.4102418109296485
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
        metrics:
          - type: accuracy
            value: 0.3594821788836584
          - type: f1
            value: 0.3508598314806566
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
        metrics:
          - type: accuracy
            value: 0.3869199731002017
          - type: f1
            value: 0.3768119408674127
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
        metrics:
          - type: accuracy
            value: 0.4047410894418292
          - type: f1
            value: 0.39480530387013596
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
        metrics:
          - type: accuracy
            value: 0.41523201075991933
          - type: f1
            value: 0.40200979960243827
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
        metrics:
          - type: accuracy
            value: 0.39549428379287155
          - type: f1
            value: 0.3818556124333806
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
        metrics:
          - type: accuracy
            value: 0.228782784129119
          - type: f1
            value: 0.22239467186721457
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
        metrics:
          - type: accuracy
            value: 0.2051445864156019
          - type: f1
            value: 0.1999904788553022
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
        metrics:
          - type: accuracy
            value: 0.34926025554808343
          - type: f1
            value: 0.33240167172157226
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
        metrics:
          - type: accuracy
            value: 0.4074983187626093
          - type: f1
            value: 0.3930274328728882
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
        metrics:
          - type: accuracy
            value: 0.3906859448554136
          - type: f1
            value: 0.39215420396629713
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
        metrics:
          - type: accuracy
            value: 0.29747814391392063
          - type: f1
            value: 0.2826183689222045
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
        metrics:
          - type: accuracy
            value: 0.3802286482851379
          - type: f1
            value: 0.37874243860869694
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
        metrics:
          - type: accuracy
            value: 0.48550773369199723
          - type: f1
            value: 0.46739962588264905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
        metrics:
          - type: accuracy
            value: 0.45178211163416276
          - type: f1
            value: 0.4484809741811729
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
        metrics:
          - type: map_at_1
            value: 0.61697
          - type: map_at_10
            value: 0.74204
          - type: map_at_100
            value: 0.75023
          - type: map_at_1000
            value: 0.75059
          - type: map_at_3
            value: 0.71265
          - type: map_at_5
            value: 0.73001
          - type: ndcg_at_1
            value: 0.7095
          - type: ndcg_at_10
            value: 0.7896
          - type: ndcg_at_100
            value: 0.8126
          - type: ndcg_at_1000
            value: 0.81679
          - type: ndcg_at_3
            value: 0.75246
          - type: ndcg_at_5
            value: 0.77092
          - type: precision_at_1
            value: 0.7095
          - type: precision_at_10
            value: 0.11998
          - type: precision_at_100
            value: 0.01451
          - type: precision_at_1000
            value: 0.00154
          - type: precision_at_3
            value: 0.3263
          - type: precision_at_5
            value: 0.21574
          - type: recall_at_1
            value: 0.61697
          - type: recall_at_10
            value: 0.88233
          - type: recall_at_100
            value: 0.96961
          - type: recall_at_1000
            value: 0.99401
          - type: recall_at_3
            value: 0.77689
          - type: recall_at_5
            value: 0.82745
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
        metrics:
          - type: cos_sim_pearson
            value: 0.8096286245858941
          - type: cos_sim_spearman
            value: 0.7457093488947429
          - type: euclidean_pearson
            value: 0.7550377970259401
          - type: euclidean_spearman
            value: 0.7174980046229991
          - type: manhattan_pearson
            value: 0.7532568360913819
          - type: manhattan_spearman
            value: 0.7180676733410375
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
        metrics:
          - type: cos_sim_accuracy
            value: 0.8663018589668956
          - type: cos_sim_accuracy_threshold
            value: 0.6738145351409912
          - type: cos_sim_ap
            value: 0.805106377126291
          - type: cos_sim_f1
            value: 0.7270810586950793
          - type: cos_sim_f1_threshold
            value: 0.6406128406524658
          - type: cos_sim_precision
            value: 0.7114123627790466
          - type: cos_sim_recall
            value: 0.743455497382199
          - type: dot_accuracy
            value: 0.8241743315092949
          - type: dot_accuracy_threshold
            value: 967.1823120117188
          - type: dot_ap
            value: 0.692393381283664
          - type: dot_f1
            value: 0.6561346624814597
          - type: dot_f1_threshold
            value: 831.1060791015625
          - type: dot_precision
            value: 0.5943260638630257
          - type: dot_recall
            value: 0.7322913458577148
          - type: euclidean_accuracy
            value: 0.8649435324251951
          - type: euclidean_accuracy_threshold
            value: 30.077878952026367
          - type: euclidean_ap
            value: 0.8028100477250927
          - type: euclidean_f1
            value: 0.7258242344489099
          - type: euclidean_f1_threshold
            value: 32.570228576660156
          - type: euclidean_precision
            value: 0.6744662568576906
          - type: euclidean_recall
            value: 0.7856482907299045
          - type: manhattan_accuracy
            value: 0.8659525749990298
          - type: manhattan_accuracy_threshold
            value: 625.0921020507812
          - type: manhattan_ap
            value: 0.8037850832566262
          - type: manhattan_f1
            value: 0.7259435321233073
          - type: manhattan_f1_threshold
            value: 679.8679809570312
          - type: manhattan_precision
            value: 0.6819350473612991
          - type: manhattan_recall
            value: 0.7760240221743148
          - type: max_accuracy
            value: 0.8663018589668956
          - type: max_ap
            value: 0.805106377126291
          - type: max_f1
            value: 0.7270810586950793
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
        metrics:
          - type: v_measure
            value: 0.23080939123955474
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
        metrics:
          - type: cos_sim_pearson
            value: 0.430464619152799
          - type: cos_sim_spearman
            value: 0.4565606588928089
          - type: euclidean_pearson
            value: 0.45694377883554993
          - type: euclidean_spearman
            value: 0.4508552742346606
          - type: manhattan_pearson
            value: 0.45871666989036813
          - type: manhattan_spearman
            value: 0.45155963016434164
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
        metrics:
          - type: cos_sim_pearson
            value: 0.5327469278912148
          - type: cos_sim_spearman
            value: 0.541611320762379
          - type: euclidean_pearson
            value: 0.5597026429327157
          - type: euclidean_spearman
            value: 0.5471320909074608
          - type: manhattan_pearson
            value: 0.5612511774278802
          - type: manhattan_spearman
            value: 0.5522875659158676
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
        metrics:
          - type: cos_sim_pearson
            value: 0.015482997790039945
          - type: cos_sim_spearman
            value: 0.01720838634736358
          - type: euclidean_pearson
            value: -0.06727915670345885
          - type: euclidean_spearman
            value: -0.06112826908474543
          - type: manhattan_pearson
            value: -0.0494386093060865
          - type: manhattan_spearman
            value: -0.05018174110623732
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
        metrics:
          - type: cos_sim_pearson
            value: 0.275420218362265
          - type: cos_sim_spearman
            value: 0.2548383843103101
          - type: euclidean_pearson
            value: 0.06268684143856358
          - type: euclidean_spearman
            value: 0.058779614210916785
          - type: manhattan_pearson
            value: 0.026672377392278606
          - type: manhattan_spearman
            value: 0.025683839956554773
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.8532029757646663
          - type: cos_sim_spearman
            value: 0.8732720847297224
          - type: euclidean_pearson
            value: 0.8112594485791255
          - type: euclidean_spearman
            value: 0.811531079489332
          - type: manhattan_pearson
            value: 0.8132899414704019
          - type: manhattan_spearman
            value: 0.813897040261192
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
        metrics:
          - type: cos_sim_pearson
            value: 0.0437162299241808
          - type: cos_sim_spearman
            value: 0.020879072561774542
          - type: euclidean_pearson
            value: -0.030725243785454597
          - type: euclidean_spearman
            value: -0.05372133927948353
          - type: manhattan_pearson
            value: -0.04867795293367359
          - type: manhattan_spearman
            value: -0.07939706984001878
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.20306030448858603
          - type: cos_sim_spearman
            value: 0.2193220782551375
          - type: euclidean_pearson
            value: 0.03878631934602361
          - type: euclidean_spearman
            value: 0.05171796902725965
          - type: manhattan_pearson
            value: 0.0713020644036815
          - type: manhattan_spearman
            value: 0.07707315591498748
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
        metrics:
          - type: cos_sim_pearson
            value: 0.6681873207478459
          - type: cos_sim_spearman
            value: 0.6780273445636502
          - type: euclidean_pearson
            value: 0.7060654682977268
          - type: euclidean_spearman
            value: 0.694566208379486
          - type: manhattan_pearson
            value: 0.7095484618966419
          - type: manhattan_spearman
            value: 0.6978323323058773
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.21366487281202604
          - type: cos_sim_spearman
            value: 0.18906275286984808
          - type: euclidean_pearson
            value: -0.023390998579461995
          - type: euclidean_spearman
            value: -0.04151213674012541
          - type: manhattan_pearson
            value: -0.02234831868844863
          - type: manhattan_spearman
            value: -0.045552913285014415
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.20731531772510847
          - type: cos_sim_spearman
            value: 0.163855949033176
          - type: euclidean_pearson
            value: -0.08734648741714238
          - type: euclidean_spearman
            value: -0.1075672244732182
          - type: manhattan_pearson
            value: -0.07536654126608877
          - type: manhattan_spearman
            value: -0.08330065460047295
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
        metrics:
          - type: cos_sim_pearson
            value: 0.2661843502408425
          - type: cos_sim_spearman
            value: 0.23488974089577816
          - type: euclidean_pearson
            value: -0.031310350304707864
          - type: euclidean_spearman
            value: -0.031242598481634666
          - type: manhattan_pearson
            value: -0.011096752982707007
          - type: manhattan_spearman
            value: -0.014591693078765849
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
        metrics:
          - type: map_at_1
            value: 0.00113
          - type: map_at_10
            value: 0.00733
          - type: map_at_100
            value: 0.03313
          - type: map_at_1000
            value: 0.07355
          - type: map_at_3
            value: 0.00282
          - type: map_at_5
            value: 0.00414
          - type: ndcg_at_1
            value: 0.42
          - type: ndcg_at_10
            value: 0.3931
          - type: ndcg_at_100
            value: 0.26904
          - type: ndcg_at_1000
            value: 0.23778
          - type: ndcg_at_3
            value: 0.42776
          - type: ndcg_at_5
            value: 0.41554
          - type: precision_at_1
            value: 0.48
          - type: precision_at_10
            value: 0.43
          - type: precision_at_100
            value: 0.2708
          - type: precision_at_1000
            value: 0.11014
          - type: precision_at_3
            value: 0.48
          - type: precision_at_5
            value: 0.456
          - type: recall_at_1
            value: 0.00113
          - type: recall_at_10
            value: 0.00976
          - type: recall_at_100
            value: 0.05888
          - type: recall_at_1000
            value: 0.22635
          - type: recall_at_3
            value: 0.00329
          - type: recall_at_5
            value: 0.00518
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
        metrics:
          - type: map_at_1
            value: 0.21556
          - type: map_at_10
            value: 0.27982
          - type: map_at_100
            value: 0.28937
          - type: map_at_1000
            value: 0.29058
          - type: map_at_3
            value: 0.25644
          - type: map_at_5
            value: 0.26996
          - type: ndcg_at_1
            value: 0.23333
          - type: ndcg_at_10
            value: 0.31787
          - type: ndcg_at_100
            value: 0.36648
          - type: ndcg_at_1000
            value: 0.39936
          - type: ndcg_at_3
            value: 0.27299
          - type: ndcg_at_5
            value: 0.29659
          - type: precision_at_1
            value: 0.23333
          - type: precision_at_10
            value: 0.04867
          - type: precision_at_100
            value: 0.00743
          - type: precision_at_1000
            value: 0.00102
          - type: precision_at_3
            value: 0.11333
          - type: precision_at_5
            value: 0.08133
          - type: recall_at_1
            value: 0.21556
          - type: recall_at_10
            value: 0.42333
          - type: recall_at_100
            value: 0.65706
          - type: recall_at_1000
            value: 0.91489
          - type: recall_at_3
            value: 0.30361
          - type: recall_at_5
            value: 0.36222
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
        metrics:
          - type: map_at_1
            value: 0.0172
          - type: map_at_10
            value: 0.03824
          - type: map_at_100
            value: 0.04727
          - type: map_at_1000
            value: 0.04932
          - type: map_at_3
            value: 0.02867
          - type: map_at_5
            value: 0.03323
          - type: ndcg_at_1
            value: 0.085
          - type: ndcg_at_10
            value: 0.07133
          - type: ndcg_at_100
            value: 0.11911
          - type: ndcg_at_1000
            value: 0.16962
          - type: ndcg_at_3
            value: 0.06763
          - type: ndcg_at_5
            value: 0.05832
          - type: precision_at_1
            value: 0.085
          - type: precision_at_10
            value: 0.0368
          - type: precision_at_100
            value: 0.01067
          - type: precision_at_1000
            value: 0.0023
          - type: precision_at_3
            value: 0.06233
          - type: precision_at_5
            value: 0.0502
          - type: recall_at_1
            value: 0.0172
          - type: recall_at_10
            value: 0.07487
          - type: recall_at_100
            value: 0.21683
          - type: recall_at_1000
            value: 0.46688
          - type: recall_at_3
            value: 0.03798
          - type: recall_at_5
            value: 0.05113
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
        metrics:
          - type: map_at_1
            value: 0.03515
          - type: map_at_10
            value: 0.05884
          - type: map_at_100
            value: 0.0651
          - type: map_at_1000
            value: 0.06599
          - type: map_at_3
            value: 0.04892
          - type: map_at_5
            value: 0.05391
          - type: ndcg_at_1
            value: 0.04056
          - type: ndcg_at_10
            value: 0.07626
          - type: ndcg_at_100
            value: 0.1108
          - type: ndcg_at_1000
            value: 0.13793
          - type: ndcg_at_3
            value: 0.05537
          - type: ndcg_at_5
            value: 0.0645
          - type: precision_at_1
            value: 0.04056
          - type: precision_at_10
            value: 0.01457
          - type: precision_at_100
            value: 0.00347
          - type: precision_at_1000
            value: 0.00061
          - type: precision_at_3
            value: 0.02607
          - type: precision_at_5
            value: 0.02086
          - type: recall_at_1
            value: 0.03515
          - type: recall_at_10
            value: 0.12312
          - type: recall_at_100
            value: 0.28713
          - type: recall_at_1000
            value: 0.50027
          - type: recall_at_3
            value: 0.06701
          - type: recall_at_5
            value: 0.08816
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
        metrics:
          - type: cos_sim_pearson
            value: 0.7604750373932828
          - type: cos_sim_spearman
            value: 0.7793230986462234
          - type: euclidean_pearson
            value: 0.758320302521164
          - type: euclidean_spearman
            value: 0.7683154481579385
          - type: manhattan_pearson
            value: 0.7598713517720608
          - type: manhattan_spearman
            value: 0.7695479705521506
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
        metrics:
          - type: accuracy
            value: 0.42225
          - type: f1
            value: 0.3756351654211211
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
        metrics:
          - type: map_at_1
            value: 0.13757
          - type: map_at_10
            value: 0.1927
          - type: map_at_100
            value: 0.20461
          - type: map_at_1000
            value: 0.20641
          - type: map_at_3
            value: 0.17865
          - type: map_at_5
            value: 0.18618
          - type: ndcg_at_1
            value: 0.16996
          - type: ndcg_at_10
            value: 0.22774
          - type: ndcg_at_100
            value: 0.27675
          - type: ndcg_at_1000
            value: 0.31145
          - type: ndcg_at_3
            value: 0.20691
          - type: ndcg_at_5
            value: 0.21741
          - type: precision_at_1
            value: 0.16996
          - type: precision_at_10
            value: 0.04545
          - type: precision_at_100
            value: 0.01036
          - type: precision_at_1000
            value: 0.00185
          - type: precision_at_3
            value: 0.10145
          - type: precision_at_5
            value: 0.07391
          - type: recall_at_1
            value: 0.13757
          - type: recall_at_10
            value: 0.28234
          - type: recall_at_100
            value: 0.51055
          - type: recall_at_1000
            value: 0.75353
          - type: recall_at_3
            value: 0.21794
          - type: recall_at_5
            value: 0.24614
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
        metrics:
          - type: v_measure
            value: 0.41007999100992665
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
        metrics:
          - type: map_at_1
            value: 0.11351
          - type: map_at_10
            value: 0.14953
          - type: map_at_100
            value: 0.15623
          - type: map_at_1000
            value: 0.15716
          - type: map_at_3
            value: 0.13603
          - type: map_at_5
            value: 0.14343
          - type: ndcg_at_1
            value: 0.12429
          - type: ndcg_at_10
            value: 0.17319
          - type: ndcg_at_100
            value: 0.2099
          - type: ndcg_at_1000
            value: 0.23899
          - type: ndcg_at_3
            value: 0.14605
          - type: ndcg_at_5
            value: 0.1589
          - type: precision_at_1
            value: 0.12429
          - type: precision_at_10
            value: 0.02701
          - type: precision_at_100
            value: 0.00487
          - type: precision_at_1000
            value: 0.00078
          - type: precision_at_3
            value: 0.06026
          - type: precision_at_5
            value: 0.04384
          - type: recall_at_1
            value: 0.11351
          - type: recall_at_10
            value: 0.23536
          - type: recall_at_100
            value: 0.40942
          - type: recall_at_1000
            value: 0.6405
          - type: recall_at_3
            value: 0.16195
          - type: recall_at_5
            value: 0.19264
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
        metrics:
          - type: cos_sim_pearson
            value: 0.8000905671833967
          - type: cos_sim_spearman
            value: 0.7954269211027273
          - type: euclidean_pearson
            value: 0.7951954544247442
          - type: euclidean_spearman
            value: 0.7893670303434288
          - type: manhattan_pearson
            value: 0.7947610653340678
          - type: manhattan_spearman
            value: 0.7907344156719612
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
        metrics:
          - type: accuracy
            value: 0.7467857142857142
          - type: f1
            value: 0.7461743413995573
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
        metrics:
          - type: map_at_1
            value: 0.12307
          - type: map_at_10
            value: 0.1544
          - type: map_at_100
            value: 0.16033
          - type: map_at_1000
            value: 0.1614
          - type: map_at_3
            value: 0.14393
          - type: map_at_5
            value: 0.14856
          - type: ndcg_at_1
            value: 0.14571
          - type: ndcg_at_10
            value: 0.17685
          - type: ndcg_at_100
            value: 0.20882
          - type: ndcg_at_1000
            value: 0.23888
          - type: ndcg_at_3
            value: 0.15739
          - type: ndcg_at_5
            value: 0.16391
          - type: precision_at_1
            value: 0.14571
          - type: precision_at_10
            value: 0.02883
          - type: precision_at_100
            value: 0.00491
          - type: precision_at_1000
            value: 0.0008
          - type: precision_at_3
            value: 0.07004
          - type: precision_at_5
            value: 0.04693
          - type: recall_at_1
            value: 0.12307
          - type: recall_at_10
            value: 0.22566
          - type: recall_at_100
            value: 0.37469
          - type: recall_at_1000
            value: 0.6055
          - type: recall_at_3
            value: 0.16742
          - type: recall_at_5
            value: 0.18634
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
        metrics:
          - type: cos_sim_pearson
            value: 0.7278000135012542
          - type: cos_sim_spearman
            value: 0.7092812216947605
          - type: euclidean_pearson
            value: 0.771169214949292
          - type: euclidean_spearman
            value: 0.7710175681583312
          - type: manhattan_pearson
            value: 0.7684527031837596
          - type: manhattan_spearman
            value: 0.7707043080084379
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
        metrics:
          - type: v_measure
            value: 0.2893427045246491
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
        metrics:
          - type: v_measure
            value: 0.28230204578753637
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
        metrics:
          - type: accuracy
            value: 0.627862
          - type: ap
            value: 0.10958454618347832
          - type: f1
            value: 0.48372434170467626
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
        metrics:
          - type: v_measure
            value: 0.2824295128553035
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
        metrics:
          - type: cos_sim_accuracy
            value: 0.815640460153782
          - type: cos_sim_accuracy_threshold
            value: 0.7118978500366211
          - type: cos_sim_ap
            value: 0.5709409536692154
          - type: cos_sim_f1
            value: 0.5529607083563918
          - type: cos_sim_f1_threshold
            value: 0.5981647968292236
          - type: cos_sim_precision
            value: 0.47626310772163966
          - type: cos_sim_recall
            value: 0.6591029023746702
          - type: dot_accuracy
            value: 0.788162365142755
          - type: dot_accuracy_threshold
            value: 1049.799072265625
          - type: dot_ap
            value: 0.4742989400382077
          - type: dot_f1
            value: 0.5125944584382871
          - type: dot_f1_threshold
            value: 723.3736572265625
          - type: dot_precision
            value: 0.4255838271174625
          - type: dot_recall
            value: 0.6443271767810026
          - type: euclidean_accuracy
            value: 0.8029445073612684
          - type: euclidean_accuracy_threshold
            value: 26.134265899658203
          - type: euclidean_ap
            value: 0.5342012231336148
          - type: euclidean_f1
            value: 0.5186778356350464
          - type: euclidean_f1_threshold
            value: 31.25627326965332
          - type: euclidean_precision
            value: 0.454203013481364
          - type: euclidean_recall
            value: 0.604485488126649
          - type: manhattan_accuracy
            value: 0.802884901949097
          - type: manhattan_accuracy_threshold
            value: 560.0760498046875
          - type: manhattan_ap
            value: 0.5343205271323233
          - type: manhattan_f1
            value: 0.520141655599823
          - type: manhattan_f1_threshold
            value: 658.3975830078125
          - type: manhattan_precision
            value: 0.44796035074342355
          - type: manhattan_recall
            value: 0.6200527704485488
          - type: max_accuracy
            value: 0.815640460153782
          - type: max_ap
            value: 0.5709409536692154
          - type: max_f1
            value: 0.5529607083563918
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
        metrics:
          - type: accuracy
            value: 0.582421340629275
          - type: f1
            value: 0.40116960466226426
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
        metrics:
          - type: accuracy
            value: 0.4506903353057199
          - type: f1
            value: 0.30468468273374966
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
        metrics:
          - type: accuracy
            value: 0.4880920613742495
          - type: f1
            value: 0.3265985375400447
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
        metrics:
          - type: accuracy
            value: 0.4433761352959599
          - type: f1
            value: 0.2930204743560644
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
        metrics:
          - type: accuracy
            value: 0.34198637504481894
          - type: f1
            value: 0.2206370603224841
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
        metrics:
          - type: accuracy
            value: 0.4311030741410488
          - type: f1
            value: 0.2692408933648504
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
        metrics:
          - type: v_measure
            value: 0.3375741018380938
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
        metrics:
          - type: map_at_1
            value: 0.13909
          - type: map_at_10
            value: 0.19256
          - type: map_at_100
            value: 0.20286
          - type: map_at_1000
            value: 0.20429
          - type: map_at_3
            value: 0.17399
          - type: map_at_5
            value: 0.18399
          - type: ndcg_at_1
            value: 0.17421
          - type: ndcg_at_10
            value: 0.23106
          - type: ndcg_at_100
            value: 0.28129
          - type: ndcg_at_1000
            value: 0.31481
          - type: ndcg_at_3
            value: 0.19789
          - type: ndcg_at_5
            value: 0.21237
          - type: precision_at_1
            value: 0.17421
          - type: precision_at_10
            value: 0.04331
          - type: precision_at_100
            value: 0.00839
          - type: precision_at_1000
            value: 0.00131
          - type: precision_at_3
            value: 0.094
          - type: precision_at_5
            value: 0.06776
          - type: recall_at_1
            value: 0.13909
          - type: recall_at_10
            value: 0.31087
          - type: recall_at_100
            value: 0.52946
          - type: recall_at_1000
            value: 0.76546
          - type: recall_at_3
            value: 0.21351
          - type: recall_at_5
            value: 0.25265
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
        metrics:
          - type: map
            value: 0.3996520488022785
          - type: mrr
            value: 0.40189248047703935
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
        metrics:
          - type: map_at_1
            value: 0.12738416666666666
          - type: map_at_10
            value: 0.17235916666666667
          - type: map_at_100
            value: 0.1806333333333333
          - type: map_at_1000
            value: 0.18184333333333333
          - type: map_at_3
            value: 0.1574775
          - type: map_at_5
            value: 0.1657825
          - type: ndcg_at_1
            value: 0.15487416666666665
          - type: ndcg_at_10
            value: 0.20290166666666667
          - type: ndcg_at_100
            value: 0.24412916666666662
          - type: ndcg_at_1000
            value: 0.27586333333333335
          - type: ndcg_at_3
            value: 0.17622083333333333
          - type: ndcg_at_5
            value: 0.18859916666666668
          - type: precision_at_1
            value: 0.15487416666666665
          - type: precision_at_10
            value: 0.036226666666666664
          - type: precision_at_100
            value: 0.006820833333333333
          - type: precision_at_1000
            value: 0.0011216666666666666
          - type: precision_at_3
            value: 0.08163749999999999
          - type: precision_at_5
            value: 0.058654166666666674
          - type: recall_at_1
            value: 0.12738416666666666
          - type: recall_at_10
            value: 0.26599416666666664
          - type: recall_at_100
            value: 0.4541258333333334
          - type: recall_at_1000
            value: 0.687565
          - type: recall_at_3
            value: 0.19008166666666668
          - type: recall_at_5
            value: 0.2224991666666667
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
        metrics:
          - type: cos_sim_accuracy
            value: 0.9949306930693069
          - type: cos_sim_accuracy_threshold
            value: 0.7870972752571106
          - type: cos_sim_ap
            value: 0.7773085502917281
          - type: cos_sim_f1
            value: 0.7178978681209718
          - type: cos_sim_f1_threshold
            value: 0.7572916746139526
          - type: cos_sim_precision
            value: 0.711897738446411
          - type: cos_sim_recall
            value: 0.724
          - type: dot_accuracy
            value: 0.9908118811881188
          - type: dot_accuracy_threshold
            value: 1571.5850830078125
          - type: dot_ap
            value: 0.30267748833368235
          - type: dot_f1
            value: 0.34335201222618444
          - type: dot_f1_threshold
            value: 1329.530029296875
          - type: dot_precision
            value: 0.34994807892004154
          - type: dot_recall
            value: 0.337
          - type: euclidean_accuracy
            value: 0.9951683168316832
          - type: euclidean_accuracy_threshold
            value: 25.715721130371094
          - type: euclidean_ap
            value: 0.7864498778235628
          - type: euclidean_f1
            value: 0.7309149972929074
          - type: euclidean_f1_threshold
            value: 26.336116790771484
          - type: euclidean_precision
            value: 0.7969303423848878
          - type: euclidean_recall
            value: 0.675
          - type: manhattan_accuracy
            value: 0.9953168316831683
          - type: manhattan_accuracy_threshold
            value: 534.224609375
          - type: manhattan_ap
            value: 0.7945274878693959
          - type: manhattan_f1
            value: 0.7419863373620599
          - type: manhattan_f1_threshold
            value: 562.244140625
          - type: manhattan_precision
            value: 0.7818383167220376
          - type: manhattan_recall
            value: 0.706
          - type: max_accuracy
            value: 0.9953168316831683
          - type: max_ap
            value: 0.7945274878693959
          - type: max_f1
            value: 0.7419863373620599
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
        metrics:
          - type: map_at_1
            value: 0.09057
          - type: map_at_10
            value: 0.12721
          - type: map_at_100
            value: 0.1345
          - type: map_at_1000
            value: 0.13564
          - type: map_at_3
            value: 0.1134
          - type: map_at_5
            value: 0.12245
          - type: ndcg_at_1
            value: 0.09797
          - type: ndcg_at_10
            value: 0.15091
          - type: ndcg_at_100
            value: 0.18886
          - type: ndcg_at_1000
            value: 0.2229
          - type: ndcg_at_3
            value: 0.12365
          - type: ndcg_at_5
            value: 0.13931
          - type: precision_at_1
            value: 0.09797
          - type: precision_at_10
            value: 0.02477
          - type: precision_at_100
            value: 0.00466
          - type: precision_at_1000
            value: 0.00082
          - type: precision_at_3
            value: 0.05299
          - type: precision_at_5
            value: 0.04067
          - type: recall_at_1
            value: 0.09057
          - type: recall_at_10
            value: 0.21319
          - type: recall_at_100
            value: 0.38999
          - type: recall_at_1000
            value: 0.65374
          - type: recall_at_3
            value: 0.14331
          - type: recall_at_5
            value: 0.17917

SGPT-125M-weightedmean-nli-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader of length 8807 with parameters:

{'batch_size': 64}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 880,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 0.0002
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 881,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}