Muennighoff
commited on
Commit
•
90780e8
1
Parent(s):
f0dd127
Add MTEB eval results
Browse files
README.md
CHANGED
@@ -4,6 +4,3849 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# SGPT-125M-weightedmean-nli-bitfit
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
model-index:
|
8 |
+
- name: SGPT-125M-weightedmean-nli-bitfit
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Clustering
|
12 |
+
dataset:
|
13 |
+
type: mteb/medrxiv-clustering-p2p
|
14 |
+
name: MTEB MedrxivClusteringP2P
|
15 |
+
metrics:
|
16 |
+
- type: v_measure
|
17 |
+
value: 0.28301902023313874
|
18 |
+
- task:
|
19 |
+
type: STS
|
20 |
+
dataset:
|
21 |
+
type: mteb/sts13-sts
|
22 |
+
name: MTEB STS13
|
23 |
+
metrics:
|
24 |
+
- type: cos_sim_pearson
|
25 |
+
value: 0.76401935081936
|
26 |
+
- type: cos_sim_spearman
|
27 |
+
value: 0.7723446219694267
|
28 |
+
- type: euclidean_pearson
|
29 |
+
value: 0.7461017160439877
|
30 |
+
- type: euclidean_spearman
|
31 |
+
value: 0.7585871531365609
|
32 |
+
- type: manhattan_pearson
|
33 |
+
value: 0.7483034779539725
|
34 |
+
- type: manhattan_spearman
|
35 |
+
value: 0.759594899358843
|
36 |
+
- task:
|
37 |
+
type: Clustering
|
38 |
+
dataset:
|
39 |
+
type: mteb/arxiv-clustering-p2p
|
40 |
+
name: MTEB ArxivClusteringP2P
|
41 |
+
metrics:
|
42 |
+
- type: v_measure
|
43 |
+
value: 0.3474248247787077
|
44 |
+
- task:
|
45 |
+
type: Classification
|
46 |
+
dataset:
|
47 |
+
type: mteb/amazon_reviews_multi
|
48 |
+
name: MTEB AmazonReviewsClassification (en)
|
49 |
+
metrics:
|
50 |
+
- type: accuracy
|
51 |
+
value: 0.35098
|
52 |
+
- type: f1
|
53 |
+
value: 0.34732656514357263
|
54 |
+
- task:
|
55 |
+
type: Classification
|
56 |
+
dataset:
|
57 |
+
type: mteb/amazon_reviews_multi
|
58 |
+
name: MTEB AmazonReviewsClassification (de)
|
59 |
+
metrics:
|
60 |
+
- type: accuracy
|
61 |
+
value: 0.24516
|
62 |
+
- type: f1
|
63 |
+
value: 0.2421748200448397
|
64 |
+
- task:
|
65 |
+
type: Classification
|
66 |
+
dataset:
|
67 |
+
type: mteb/amazon_reviews_multi
|
68 |
+
name: MTEB AmazonReviewsClassification (es)
|
69 |
+
metrics:
|
70 |
+
- type: accuracy
|
71 |
+
value: 0.29097999999999996
|
72 |
+
- type: f1
|
73 |
+
value: 0.28620040162757093
|
74 |
+
- task:
|
75 |
+
type: Classification
|
76 |
+
dataset:
|
77 |
+
type: mteb/amazon_reviews_multi
|
78 |
+
name: MTEB AmazonReviewsClassification (fr)
|
79 |
+
metrics:
|
80 |
+
- type: accuracy
|
81 |
+
value: 0.27396
|
82 |
+
- type: f1
|
83 |
+
value: 0.27146888644986283
|
84 |
+
- task:
|
85 |
+
type: Classification
|
86 |
+
dataset:
|
87 |
+
type: mteb/amazon_reviews_multi
|
88 |
+
name: MTEB AmazonReviewsClassification (ja)
|
89 |
+
metrics:
|
90 |
+
- type: accuracy
|
91 |
+
value: 0.21724000000000002
|
92 |
+
- type: f1
|
93 |
+
value: 0.2137230564276654
|
94 |
+
- task:
|
95 |
+
type: Classification
|
96 |
+
dataset:
|
97 |
+
type: mteb/amazon_reviews_multi
|
98 |
+
name: MTEB AmazonReviewsClassification (zh)
|
99 |
+
metrics:
|
100 |
+
- type: accuracy
|
101 |
+
value: 0.23975999999999997
|
102 |
+
- type: f1
|
103 |
+
value: 0.23741137981755484
|
104 |
+
- task:
|
105 |
+
type: BitextMining
|
106 |
+
dataset:
|
107 |
+
type: mteb/bucc-bitext-mining
|
108 |
+
name: MTEB BUCC (de-en)
|
109 |
+
metrics:
|
110 |
+
- type: accuracy
|
111 |
+
value: 0.010960334029227558
|
112 |
+
- type: f1
|
113 |
+
value: 0.01092553931802366
|
114 |
+
- type: precision
|
115 |
+
value: 0.010908141962421711
|
116 |
+
- type: recall
|
117 |
+
value: 0.010960334029227558
|
118 |
+
- task:
|
119 |
+
type: BitextMining
|
120 |
+
dataset:
|
121 |
+
type: mteb/bucc-bitext-mining
|
122 |
+
name: MTEB BUCC (fr-en)
|
123 |
+
metrics:
|
124 |
+
- type: accuracy
|
125 |
+
value: 0.00022011886418666079
|
126 |
+
- type: f1
|
127 |
+
value: 0.00022011886418666079
|
128 |
+
- type: precision
|
129 |
+
value: 0.00022011886418666079
|
130 |
+
- type: recall
|
131 |
+
value: 0.00022011886418666079
|
132 |
+
- task:
|
133 |
+
type: BitextMining
|
134 |
+
dataset:
|
135 |
+
type: mteb/bucc-bitext-mining
|
136 |
+
name: MTEB BUCC (ru-en)
|
137 |
+
metrics:
|
138 |
+
- type: accuracy
|
139 |
+
value: 0.0
|
140 |
+
- type: f1
|
141 |
+
value: 0.0
|
142 |
+
- type: precision
|
143 |
+
value: 0.0
|
144 |
+
- type: recall
|
145 |
+
value: 0.0
|
146 |
+
- task:
|
147 |
+
type: BitextMining
|
148 |
+
dataset:
|
149 |
+
type: mteb/bucc-bitext-mining
|
150 |
+
name: MTEB BUCC (zh-en)
|
151 |
+
metrics:
|
152 |
+
- type: accuracy
|
153 |
+
value: 0.0
|
154 |
+
- type: f1
|
155 |
+
value: 0.0
|
156 |
+
- type: precision
|
157 |
+
value: 0.0
|
158 |
+
- type: recall
|
159 |
+
value: 0.0
|
160 |
+
- task:
|
161 |
+
type: Classification
|
162 |
+
dataset:
|
163 |
+
type: mteb/mtop_domain
|
164 |
+
name: MTEB MTOPDomainClassification (en)
|
165 |
+
metrics:
|
166 |
+
- type: accuracy
|
167 |
+
value: 0.8151846785225718
|
168 |
+
- type: f1
|
169 |
+
value: 0.81648869152345
|
170 |
+
- task:
|
171 |
+
type: Classification
|
172 |
+
dataset:
|
173 |
+
type: mteb/mtop_domain
|
174 |
+
name: MTEB MTOPDomainClassification (de)
|
175 |
+
metrics:
|
176 |
+
- type: accuracy
|
177 |
+
value: 0.6037475345167653
|
178 |
+
- type: f1
|
179 |
+
value: 0.5845264937551703
|
180 |
+
- task:
|
181 |
+
type: Classification
|
182 |
+
dataset:
|
183 |
+
type: mteb/mtop_domain
|
184 |
+
name: MTEB MTOPDomainClassification (es)
|
185 |
+
metrics:
|
186 |
+
- type: accuracy
|
187 |
+
value: 0.6736824549699799
|
188 |
+
- type: f1
|
189 |
+
value: 0.6535927434998515
|
190 |
+
- task:
|
191 |
+
type: Classification
|
192 |
+
dataset:
|
193 |
+
type: mteb/mtop_domain
|
194 |
+
name: MTEB MTOPDomainClassification (fr)
|
195 |
+
metrics:
|
196 |
+
- type: accuracy
|
197 |
+
value: 0.6312871907297212
|
198 |
+
- type: f1
|
199 |
+
value: 0.6137620329272278
|
200 |
+
- task:
|
201 |
+
type: Classification
|
202 |
+
dataset:
|
203 |
+
type: mteb/mtop_domain
|
204 |
+
name: MTEB MTOPDomainClassification (hi)
|
205 |
+
metrics:
|
206 |
+
- type: accuracy
|
207 |
+
value: 0.47045536034420943
|
208 |
+
- type: f1
|
209 |
+
value: 0.46203899126445613
|
210 |
+
- task:
|
211 |
+
type: Classification
|
212 |
+
dataset:
|
213 |
+
type: mteb/mtop_domain
|
214 |
+
name: MTEB MTOPDomainClassification (th)
|
215 |
+
metrics:
|
216 |
+
- type: accuracy
|
217 |
+
value: 0.5228209764918625
|
218 |
+
- type: f1
|
219 |
+
value: 0.5075489206473579
|
220 |
+
- task:
|
221 |
+
type: Retrieval
|
222 |
+
dataset:
|
223 |
+
type: BeIR/cqadupstack
|
224 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
225 |
+
metrics:
|
226 |
+
- type: map_at_1
|
227 |
+
value: 0.0808
|
228 |
+
- type: map_at_10
|
229 |
+
value: 0.11691
|
230 |
+
- type: map_at_100
|
231 |
+
value: 0.12312
|
232 |
+
- type: map_at_1000
|
233 |
+
value: 0.12439
|
234 |
+
- type: map_at_3
|
235 |
+
value: 0.10344
|
236 |
+
- type: map_at_5
|
237 |
+
value: 0.10996
|
238 |
+
- type: ndcg_at_1
|
239 |
+
value: 0.10697
|
240 |
+
- type: ndcg_at_10
|
241 |
+
value: 0.1448
|
242 |
+
- type: ndcg_at_100
|
243 |
+
value: 0.18161
|
244 |
+
- type: ndcg_at_1000
|
245 |
+
value: 0.21886
|
246 |
+
- type: ndcg_at_3
|
247 |
+
value: 0.11872
|
248 |
+
- type: ndcg_at_5
|
249 |
+
value: 0.12834
|
250 |
+
- type: precision_at_1
|
251 |
+
value: 0.10697
|
252 |
+
- type: precision_at_10
|
253 |
+
value: 0.02811
|
254 |
+
- type: precision_at_100
|
255 |
+
value: 0.00551
|
256 |
+
- type: precision_at_1000
|
257 |
+
value: 0.00102
|
258 |
+
- type: precision_at_3
|
259 |
+
value: 0.05804
|
260 |
+
- type: precision_at_5
|
261 |
+
value: 0.04154
|
262 |
+
- type: recall_at_1
|
263 |
+
value: 0.0808
|
264 |
+
- type: recall_at_10
|
265 |
+
value: 0.20235
|
266 |
+
- type: recall_at_100
|
267 |
+
value: 0.37526
|
268 |
+
- type: recall_at_1000
|
269 |
+
value: 0.65106
|
270 |
+
- type: recall_at_3
|
271 |
+
value: 0.12804
|
272 |
+
- type: recall_at_5
|
273 |
+
value: 0.15499
|
274 |
+
- task:
|
275 |
+
type: Classification
|
276 |
+
dataset:
|
277 |
+
type: mteb/amazon_counterfactual
|
278 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
279 |
+
metrics:
|
280 |
+
- type: accuracy
|
281 |
+
value: 0.6588059701492537
|
282 |
+
- type: ap
|
283 |
+
value: 0.28685493163579784
|
284 |
+
- type: f1
|
285 |
+
value: 0.5979951005816335
|
286 |
+
- task:
|
287 |
+
type: Classification
|
288 |
+
dataset:
|
289 |
+
type: mteb/amazon_counterfactual
|
290 |
+
name: MTEB AmazonCounterfactualClassification (de)
|
291 |
+
metrics:
|
292 |
+
- type: accuracy
|
293 |
+
value: 0.5907922912205568
|
294 |
+
- type: ap
|
295 |
+
value: 0.7391887421019034
|
296 |
+
- type: f1
|
297 |
+
value: 0.566316368658711
|
298 |
+
- task:
|
299 |
+
type: Classification
|
300 |
+
dataset:
|
301 |
+
type: mteb/amazon_counterfactual
|
302 |
+
name: MTEB AmazonCounterfactualClassification (en-ext)
|
303 |
+
metrics:
|
304 |
+
- type: accuracy
|
305 |
+
value: 0.6491754122938531
|
306 |
+
- type: ap
|
307 |
+
value: 0.16360681214864226
|
308 |
+
- type: f1
|
309 |
+
value: 0.5312659206152377
|
310 |
+
- task:
|
311 |
+
type: Classification
|
312 |
+
dataset:
|
313 |
+
type: mteb/amazon_counterfactual
|
314 |
+
name: MTEB AmazonCounterfactualClassification (ja)
|
315 |
+
metrics:
|
316 |
+
- type: accuracy
|
317 |
+
value: 0.56423982869379
|
318 |
+
- type: ap
|
319 |
+
value: 0.12143003571907898
|
320 |
+
- type: f1
|
321 |
+
value: 0.45763637779874716
|
322 |
+
- task:
|
323 |
+
type: Retrieval
|
324 |
+
dataset:
|
325 |
+
type: BeIR/cqadupstack
|
326 |
+
name: MTEB CQADupstackTexRetrieval
|
327 |
+
metrics:
|
328 |
+
- type: map_at_1
|
329 |
+
value: 0.06496
|
330 |
+
- type: map_at_10
|
331 |
+
value: 0.09243
|
332 |
+
- type: map_at_100
|
333 |
+
value: 0.09841
|
334 |
+
- type: map_at_1000
|
335 |
+
value: 0.09946
|
336 |
+
- type: map_at_3
|
337 |
+
value: 0.08395
|
338 |
+
- type: map_at_5
|
339 |
+
value: 0.08872
|
340 |
+
- type: ndcg_at_1
|
341 |
+
value: 0.08224
|
342 |
+
- type: ndcg_at_10
|
343 |
+
value: 0.1124
|
344 |
+
- type: ndcg_at_100
|
345 |
+
value: 0.14525
|
346 |
+
- type: ndcg_at_1000
|
347 |
+
value: 0.17686
|
348 |
+
- type: ndcg_at_3
|
349 |
+
value: 0.09617
|
350 |
+
- type: ndcg_at_5
|
351 |
+
value: 0.1037
|
352 |
+
- type: precision_at_1
|
353 |
+
value: 0.08224
|
354 |
+
- type: precision_at_10
|
355 |
+
value: 0.02082
|
356 |
+
- type: precision_at_100
|
357 |
+
value: 0.00443
|
358 |
+
- type: precision_at_1000
|
359 |
+
value: 0.00085
|
360 |
+
- type: precision_at_3
|
361 |
+
value: 0.04623
|
362 |
+
- type: precision_at_5
|
363 |
+
value: 0.03331
|
364 |
+
- type: recall_at_1
|
365 |
+
value: 0.06496
|
366 |
+
- type: recall_at_10
|
367 |
+
value: 0.1531
|
368 |
+
- type: recall_at_100
|
369 |
+
value: 0.3068
|
370 |
+
- type: recall_at_1000
|
371 |
+
value: 0.54335
|
372 |
+
- type: recall_at_3
|
373 |
+
value: 0.10691
|
374 |
+
- type: recall_at_5
|
375 |
+
value: 0.12688
|
376 |
+
- task:
|
377 |
+
type: Reranking
|
378 |
+
dataset:
|
379 |
+
type: mteb/mind_small
|
380 |
+
name: MTEB MindSmallReranking
|
381 |
+
metrics:
|
382 |
+
- type: map
|
383 |
+
value: 0.2926934104146833
|
384 |
+
- type: mrr
|
385 |
+
value: 0.3013214087687572
|
386 |
+
- task:
|
387 |
+
type: Retrieval
|
388 |
+
dataset:
|
389 |
+
type: nfcorpus
|
390 |
+
name: MTEB NFCorpus
|
391 |
+
metrics:
|
392 |
+
- type: map_at_1
|
393 |
+
value: 0.01227
|
394 |
+
- type: map_at_10
|
395 |
+
value: 0.03081
|
396 |
+
- type: map_at_100
|
397 |
+
value: 0.04104
|
398 |
+
- type: map_at_1000
|
399 |
+
value: 0.04989
|
400 |
+
- type: map_at_3
|
401 |
+
value: 0.02221
|
402 |
+
- type: map_at_5
|
403 |
+
value: 0.02535
|
404 |
+
- type: ndcg_at_1
|
405 |
+
value: 0.15015
|
406 |
+
- type: ndcg_at_10
|
407 |
+
value: 0.11805
|
408 |
+
- type: ndcg_at_100
|
409 |
+
value: 0.12452
|
410 |
+
- type: ndcg_at_1000
|
411 |
+
value: 0.22284
|
412 |
+
- type: ndcg_at_3
|
413 |
+
value: 0.13257
|
414 |
+
- type: ndcg_at_5
|
415 |
+
value: 0.12199
|
416 |
+
- type: precision_at_1
|
417 |
+
value: 0.16409
|
418 |
+
- type: precision_at_10
|
419 |
+
value: 0.09102
|
420 |
+
- type: precision_at_100
|
421 |
+
value: 0.03678
|
422 |
+
- type: precision_at_1000
|
423 |
+
value: 0.01609
|
424 |
+
- type: precision_at_3
|
425 |
+
value: 0.12797
|
426 |
+
- type: precision_at_5
|
427 |
+
value: 0.10464
|
428 |
+
- type: recall_at_1
|
429 |
+
value: 0.01227
|
430 |
+
- type: recall_at_10
|
431 |
+
value: 0.05838
|
432 |
+
- type: recall_at_100
|
433 |
+
value: 0.15716
|
434 |
+
- type: recall_at_1000
|
435 |
+
value: 0.48837
|
436 |
+
- type: recall_at_3
|
437 |
+
value: 0.02828
|
438 |
+
- type: recall_at_5
|
439 |
+
value: 0.03697
|
440 |
+
- task:
|
441 |
+
type: Retrieval
|
442 |
+
dataset:
|
443 |
+
type: msmarco
|
444 |
+
name: MTEB MSMARCO
|
445 |
+
metrics:
|
446 |
+
- type: map_at_1
|
447 |
+
value: 0.0288
|
448 |
+
- type: map_at_10
|
449 |
+
value: 0.04914
|
450 |
+
- type: map_at_100
|
451 |
+
value: 0.05459
|
452 |
+
- type: map_at_1000
|
453 |
+
value: 0.05538
|
454 |
+
- type: map_at_3
|
455 |
+
value: 0.04087
|
456 |
+
- type: map_at_5
|
457 |
+
value: 0.04518
|
458 |
+
- type: ndcg_at_1
|
459 |
+
value: 0.02937
|
460 |
+
- type: ndcg_at_10
|
461 |
+
value: 0.06273
|
462 |
+
- type: ndcg_at_100
|
463 |
+
value: 0.09426
|
464 |
+
- type: ndcg_at_1000
|
465 |
+
value: 0.12033
|
466 |
+
- type: ndcg_at_3
|
467 |
+
value: 0.04513
|
468 |
+
- type: ndcg_at_5
|
469 |
+
value: 0.05292
|
470 |
+
- type: precision_at_1
|
471 |
+
value: 0.02937
|
472 |
+
- type: precision_at_10
|
473 |
+
value: 0.01089
|
474 |
+
- type: precision_at_100
|
475 |
+
value: 0.00277
|
476 |
+
- type: precision_at_1000
|
477 |
+
value: 0.00051
|
478 |
+
- type: precision_at_3
|
479 |
+
value: 0.01929
|
480 |
+
- type: precision_at_5
|
481 |
+
value: 0.01547
|
482 |
+
- type: recall_at_1
|
483 |
+
value: 0.0288
|
484 |
+
- type: recall_at_10
|
485 |
+
value: 0.10578
|
486 |
+
- type: recall_at_100
|
487 |
+
value: 0.26267
|
488 |
+
- type: recall_at_1000
|
489 |
+
value: 0.4759
|
490 |
+
- type: recall_at_3
|
491 |
+
value: 0.05673
|
492 |
+
- type: recall_at_5
|
493 |
+
value: 0.07545
|
494 |
+
- task:
|
495 |
+
type: Retrieval
|
496 |
+
dataset:
|
497 |
+
type: BeIR/cqadupstack
|
498 |
+
name: MTEB CQADupstackUnixRetrieval
|
499 |
+
metrics:
|
500 |
+
- type: map_at_1
|
501 |
+
value: 0.13843
|
502 |
+
- type: map_at_10
|
503 |
+
value: 0.17496
|
504 |
+
- type: map_at_100
|
505 |
+
value: 0.18304
|
506 |
+
- type: map_at_1000
|
507 |
+
value: 0.18426
|
508 |
+
- type: map_at_3
|
509 |
+
value: 0.16225
|
510 |
+
- type: map_at_5
|
511 |
+
value: 0.1683
|
512 |
+
- type: ndcg_at_1
|
513 |
+
value: 0.16698
|
514 |
+
- type: ndcg_at_10
|
515 |
+
value: 0.20301
|
516 |
+
- type: ndcg_at_100
|
517 |
+
value: 0.24523
|
518 |
+
- type: ndcg_at_1000
|
519 |
+
value: 0.27784
|
520 |
+
- type: ndcg_at_3
|
521 |
+
value: 0.17822
|
522 |
+
- type: ndcg_at_5
|
523 |
+
value: 0.18794
|
524 |
+
- type: precision_at_1
|
525 |
+
value: 0.16698
|
526 |
+
- type: precision_at_10
|
527 |
+
value: 0.03358
|
528 |
+
- type: precision_at_100
|
529 |
+
value: 0.00618
|
530 |
+
- type: precision_at_1000
|
531 |
+
value: 0.00101
|
532 |
+
- type: precision_at_3
|
533 |
+
value: 0.07898
|
534 |
+
- type: precision_at_5
|
535 |
+
value: 0.05429
|
536 |
+
- type: recall_at_1
|
537 |
+
value: 0.13843
|
538 |
+
- type: recall_at_10
|
539 |
+
value: 0.25888
|
540 |
+
- type: recall_at_100
|
541 |
+
value: 0.45028
|
542 |
+
- type: recall_at_1000
|
543 |
+
value: 0.68991
|
544 |
+
- type: recall_at_3
|
545 |
+
value: 0.18851
|
546 |
+
- type: recall_at_5
|
547 |
+
value: 0.21462
|
548 |
+
- task:
|
549 |
+
type: STS
|
550 |
+
dataset:
|
551 |
+
type: mteb/sts12-sts
|
552 |
+
name: MTEB STS12
|
553 |
+
metrics:
|
554 |
+
- type: cos_sim_pearson
|
555 |
+
value: 0.8020938796088339
|
556 |
+
- type: cos_sim_spearman
|
557 |
+
value: 0.6916914010333395
|
558 |
+
- type: euclidean_pearson
|
559 |
+
value: 0.7933415250097545
|
560 |
+
- type: euclidean_spearman
|
561 |
+
value: 0.7146707320292746
|
562 |
+
- type: manhattan_pearson
|
563 |
+
value: 0.7973669837981976
|
564 |
+
- type: manhattan_spearman
|
565 |
+
value: 0.7187919511134903
|
566 |
+
- task:
|
567 |
+
type: Clustering
|
568 |
+
dataset:
|
569 |
+
type: mteb/stackexchange-clustering
|
570 |
+
name: MTEB StackExchangeClustering
|
571 |
+
metrics:
|
572 |
+
- type: v_measure
|
573 |
+
value: 0.4459127540530939
|
574 |
+
- task:
|
575 |
+
type: Reranking
|
576 |
+
dataset:
|
577 |
+
type: mteb/scidocs-reranking
|
578 |
+
name: MTEB SciDocsRR
|
579 |
+
metrics:
|
580 |
+
- type: map
|
581 |
+
value: 0.6835710819755543
|
582 |
+
- type: mrr
|
583 |
+
value: 0.8805442832403617
|
584 |
+
- task:
|
585 |
+
type: Retrieval
|
586 |
+
dataset:
|
587 |
+
type: arguana
|
588 |
+
name: MTEB ArguAna
|
589 |
+
metrics:
|
590 |
+
- type: map_at_1
|
591 |
+
value: 0.13442
|
592 |
+
- type: map_at_10
|
593 |
+
value: 0.24275
|
594 |
+
- type: map_at_100
|
595 |
+
value: 0.25588
|
596 |
+
- type: map_at_1000
|
597 |
+
value: 0.25659
|
598 |
+
- type: map_at_3
|
599 |
+
value: 0.20092
|
600 |
+
- type: map_at_5
|
601 |
+
value: 0.2244
|
602 |
+
- type: ndcg_at_1
|
603 |
+
value: 0.13442
|
604 |
+
- type: ndcg_at_10
|
605 |
+
value: 0.3104
|
606 |
+
- type: ndcg_at_100
|
607 |
+
value: 0.37529
|
608 |
+
- type: ndcg_at_1000
|
609 |
+
value: 0.39348
|
610 |
+
- type: ndcg_at_3
|
611 |
+
value: 0.22342
|
612 |
+
- type: ndcg_at_5
|
613 |
+
value: 0.26596
|
614 |
+
- type: precision_at_1
|
615 |
+
value: 0.13442
|
616 |
+
- type: precision_at_10
|
617 |
+
value: 0.05299
|
618 |
+
- type: precision_at_100
|
619 |
+
value: 0.00836
|
620 |
+
- type: precision_at_1000
|
621 |
+
value: 0.00098
|
622 |
+
- type: precision_at_3
|
623 |
+
value: 0.09625
|
624 |
+
- type: precision_at_5
|
625 |
+
value: 0.07852
|
626 |
+
- type: recall_at_1
|
627 |
+
value: 0.13442
|
628 |
+
- type: recall_at_10
|
629 |
+
value: 0.52987
|
630 |
+
- type: recall_at_100
|
631 |
+
value: 0.83642
|
632 |
+
- type: recall_at_1000
|
633 |
+
value: 0.97795
|
634 |
+
- type: recall_at_3
|
635 |
+
value: 0.28876
|
636 |
+
- type: recall_at_5
|
637 |
+
value: 0.3926
|
638 |
+
- task:
|
639 |
+
type: Reranking
|
640 |
+
dataset:
|
641 |
+
type: mteb/askubuntudupquestions-reranking
|
642 |
+
name: MTEB AskUbuntuDupQuestions
|
643 |
+
metrics:
|
644 |
+
- type: map
|
645 |
+
value: 0.5263439984994702
|
646 |
+
- type: mrr
|
647 |
+
value: 0.6575704612408213
|
648 |
+
- task:
|
649 |
+
type: Classification
|
650 |
+
dataset:
|
651 |
+
type: mteb/tweet_sentiment_extraction
|
652 |
+
name: MTEB TweetSentimentExtractionClassification
|
653 |
+
metrics:
|
654 |
+
- type: accuracy
|
655 |
+
value: 0.5482173174872665
|
656 |
+
- type: f1
|
657 |
+
value: 0.5514729314789282
|
658 |
+
- task:
|
659 |
+
type: Clustering
|
660 |
+
dataset:
|
661 |
+
type: mteb/arxiv-clustering-s2s
|
662 |
+
name: MTEB ArxivClusteringS2S
|
663 |
+
metrics:
|
664 |
+
- type: v_measure
|
665 |
+
value: 0.2467870651472156
|
666 |
+
- task:
|
667 |
+
type: Retrieval
|
668 |
+
dataset:
|
669 |
+
type: hotpotqa
|
670 |
+
name: MTEB HotpotQA
|
671 |
+
metrics:
|
672 |
+
- type: map_at_1
|
673 |
+
value: 0.09676
|
674 |
+
- type: map_at_10
|
675 |
+
value: 0.13351
|
676 |
+
- type: map_at_100
|
677 |
+
value: 0.13919
|
678 |
+
- type: map_at_1000
|
679 |
+
value: 0.1401
|
680 |
+
- type: map_at_3
|
681 |
+
value: 0.12223
|
682 |
+
- type: map_at_5
|
683 |
+
value: 0.12812
|
684 |
+
- type: ndcg_at_1
|
685 |
+
value: 0.19352
|
686 |
+
- type: ndcg_at_10
|
687 |
+
value: 0.17727
|
688 |
+
- type: ndcg_at_100
|
689 |
+
value: 0.20837
|
690 |
+
- type: ndcg_at_1000
|
691 |
+
value: 0.23412
|
692 |
+
- type: ndcg_at_3
|
693 |
+
value: 0.15317
|
694 |
+
- type: ndcg_at_5
|
695 |
+
value: 0.16436
|
696 |
+
- type: precision_at_1
|
697 |
+
value: 0.19352
|
698 |
+
- type: precision_at_10
|
699 |
+
value: 0.03993
|
700 |
+
- type: precision_at_100
|
701 |
+
value: 0.00651
|
702 |
+
- type: precision_at_1000
|
703 |
+
value: 0.001
|
704 |
+
- type: precision_at_3
|
705 |
+
value: 0.09669
|
706 |
+
- type: precision_at_5
|
707 |
+
value: 0.0669
|
708 |
+
- type: recall_at_1
|
709 |
+
value: 0.09676
|
710 |
+
- type: recall_at_10
|
711 |
+
value: 0.19966
|
712 |
+
- type: recall_at_100
|
713 |
+
value: 0.32573
|
714 |
+
- type: recall_at_1000
|
715 |
+
value: 0.49905
|
716 |
+
- type: recall_at_3
|
717 |
+
value: 0.14504
|
718 |
+
- type: recall_at_5
|
719 |
+
value: 0.16725
|
720 |
+
- task:
|
721 |
+
type: Retrieval
|
722 |
+
dataset:
|
723 |
+
type: webis-touche2020
|
724 |
+
name: MTEB Touche2020
|
725 |
+
metrics:
|
726 |
+
- type: map_at_1
|
727 |
+
value: 0.00645
|
728 |
+
- type: map_at_10
|
729 |
+
value: 0.04116
|
730 |
+
- type: map_at_100
|
731 |
+
value: 0.07527
|
732 |
+
- type: map_at_1000
|
733 |
+
value: 0.08678
|
734 |
+
- type: map_at_3
|
735 |
+
value: 0.01602
|
736 |
+
- type: map_at_5
|
737 |
+
value: 0.026
|
738 |
+
- type: ndcg_at_1
|
739 |
+
value: 0.10204
|
740 |
+
- type: ndcg_at_10
|
741 |
+
value: 0.1227
|
742 |
+
- type: ndcg_at_100
|
743 |
+
value: 0.22461
|
744 |
+
- type: ndcg_at_1000
|
745 |
+
value: 0.33543
|
746 |
+
- type: ndcg_at_3
|
747 |
+
value: 0.09982
|
748 |
+
- type: ndcg_at_5
|
749 |
+
value: 0.11498
|
750 |
+
- type: precision_at_1
|
751 |
+
value: 0.10204
|
752 |
+
- type: precision_at_10
|
753 |
+
value: 0.12245
|
754 |
+
- type: precision_at_100
|
755 |
+
value: 0.05286
|
756 |
+
- type: precision_at_1000
|
757 |
+
value: 0.01263
|
758 |
+
- type: precision_at_3
|
759 |
+
value: 0.10884
|
760 |
+
- type: precision_at_5
|
761 |
+
value: 0.13061
|
762 |
+
- type: recall_at_1
|
763 |
+
value: 0.00645
|
764 |
+
- type: recall_at_10
|
765 |
+
value: 0.08996
|
766 |
+
- type: recall_at_100
|
767 |
+
value: 0.33666
|
768 |
+
- type: recall_at_1000
|
769 |
+
value: 0.67704
|
770 |
+
- type: recall_at_3
|
771 |
+
value: 0.02504
|
772 |
+
- type: recall_at_5
|
773 |
+
value: 0.0495
|
774 |
+
- task:
|
775 |
+
type: Retrieval
|
776 |
+
dataset:
|
777 |
+
type: BeIR/cqadupstack
|
778 |
+
name: MTEB CQADupstackAndroidRetrieval
|
779 |
+
metrics:
|
780 |
+
- type: map_at_1
|
781 |
+
value: 0.18222
|
782 |
+
- type: map_at_10
|
783 |
+
value: 0.24506
|
784 |
+
- type: map_at_100
|
785 |
+
value: 0.25611
|
786 |
+
- type: map_at_1000
|
787 |
+
value: 0.25758
|
788 |
+
- type: map_at_3
|
789 |
+
value: 0.22265
|
790 |
+
- type: map_at_5
|
791 |
+
value: 0.23698
|
792 |
+
- type: ndcg_at_1
|
793 |
+
value: 0.23033
|
794 |
+
- type: ndcg_at_10
|
795 |
+
value: 0.28719
|
796 |
+
- type: ndcg_at_100
|
797 |
+
value: 0.33748
|
798 |
+
- type: ndcg_at_1000
|
799 |
+
value: 0.37056
|
800 |
+
- type: ndcg_at_3
|
801 |
+
value: 0.2524
|
802 |
+
- type: ndcg_at_5
|
803 |
+
value: 0.2712
|
804 |
+
- type: precision_at_1
|
805 |
+
value: 0.23033
|
806 |
+
- type: precision_at_10
|
807 |
+
value: 0.05408
|
808 |
+
- type: precision_at_100
|
809 |
+
value: 0.01004
|
810 |
+
- type: precision_at_1000
|
811 |
+
value: 0.00158
|
812 |
+
- type: precision_at_3
|
813 |
+
value: 0.11874
|
814 |
+
- type: precision_at_5
|
815 |
+
value: 0.08927
|
816 |
+
- type: recall_at_1
|
817 |
+
value: 0.18222
|
818 |
+
- type: recall_at_10
|
819 |
+
value: 0.36355
|
820 |
+
- type: recall_at_100
|
821 |
+
value: 0.58724
|
822 |
+
- type: recall_at_1000
|
823 |
+
value: 0.81335
|
824 |
+
- type: recall_at_3
|
825 |
+
value: 0.26334
|
826 |
+
- type: recall_at_5
|
827 |
+
value: 0.314
|
828 |
+
- task:
|
829 |
+
type: Summarization
|
830 |
+
dataset:
|
831 |
+
type: mteb/summeval
|
832 |
+
name: MTEB SummEval
|
833 |
+
metrics:
|
834 |
+
- type: cos_sim_pearson
|
835 |
+
value: 0.3056303767714449
|
836 |
+
- type: cos_sim_spearman
|
837 |
+
value: 0.30256847004390486
|
838 |
+
- type: dot_pearson
|
839 |
+
value: 0.29453520030995006
|
840 |
+
- type: dot_spearman
|
841 |
+
value: 0.2956173255092678
|
842 |
+
- task:
|
843 |
+
type: Classification
|
844 |
+
dataset:
|
845 |
+
type: mteb/imdb
|
846 |
+
name: MTEB ImdbClassification
|
847 |
+
metrics:
|
848 |
+
- type: accuracy
|
849 |
+
value: 0.62896
|
850 |
+
- type: ap
|
851 |
+
value: 0.5847769349850157
|
852 |
+
- type: f1
|
853 |
+
value: 0.6267885149592086
|
854 |
+
- task:
|
855 |
+
type: STS
|
856 |
+
dataset:
|
857 |
+
type: mteb/sts15-sts
|
858 |
+
name: MTEB STS15
|
859 |
+
metrics:
|
860 |
+
- type: cos_sim_pearson
|
861 |
+
value: 0.7905293131911804
|
862 |
+
- type: cos_sim_spearman
|
863 |
+
value: 0.7973794782598049
|
864 |
+
- type: euclidean_pearson
|
865 |
+
value: 0.7817016171851057
|
866 |
+
- type: euclidean_spearman
|
867 |
+
value: 0.7876038607583106
|
868 |
+
- type: manhattan_pearson
|
869 |
+
value: 0.784994607532332
|
870 |
+
- type: manhattan_spearman
|
871 |
+
value: 0.7913026720132872
|
872 |
+
- task:
|
873 |
+
type: Clustering
|
874 |
+
dataset:
|
875 |
+
type: mteb/medrxiv-clustering-s2s
|
876 |
+
name: MTEB MedrxivClusteringS2S
|
877 |
+
metrics:
|
878 |
+
- type: v_measure
|
879 |
+
value: 0.24932123582259286
|
880 |
+
- task:
|
881 |
+
type: Retrieval
|
882 |
+
dataset:
|
883 |
+
type: climate-fever
|
884 |
+
name: MTEB ClimateFEVER
|
885 |
+
metrics:
|
886 |
+
- type: map_at_1
|
887 |
+
value: 0.03714
|
888 |
+
- type: map_at_10
|
889 |
+
value: 0.06926
|
890 |
+
- type: map_at_100
|
891 |
+
value: 0.07879
|
892 |
+
- type: map_at_1000
|
893 |
+
value: 0.08032
|
894 |
+
- type: map_at_3
|
895 |
+
value: 0.05504
|
896 |
+
- type: map_at_5
|
897 |
+
value: 0.06357
|
898 |
+
- type: ndcg_at_1
|
899 |
+
value: 0.0886
|
900 |
+
- type: ndcg_at_10
|
901 |
+
value: 0.11007
|
902 |
+
- type: ndcg_at_100
|
903 |
+
value: 0.16154
|
904 |
+
- type: ndcg_at_1000
|
905 |
+
value: 0.19668
|
906 |
+
- type: ndcg_at_3
|
907 |
+
value: 0.08103
|
908 |
+
- type: ndcg_at_5
|
909 |
+
value: 0.09456
|
910 |
+
- type: precision_at_1
|
911 |
+
value: 0.0886
|
912 |
+
- type: precision_at_10
|
913 |
+
value: 0.0372
|
914 |
+
- type: precision_at_100
|
915 |
+
value: 0.00917
|
916 |
+
- type: precision_at_1000
|
917 |
+
value: 0.00156
|
918 |
+
- type: precision_at_3
|
919 |
+
value: 0.06254
|
920 |
+
- type: precision_at_5
|
921 |
+
value: 0.05381
|
922 |
+
- type: recall_at_1
|
923 |
+
value: 0.03714
|
924 |
+
- type: recall_at_10
|
925 |
+
value: 0.14382
|
926 |
+
- type: recall_at_100
|
927 |
+
value: 0.33166
|
928 |
+
- type: recall_at_1000
|
929 |
+
value: 0.53444
|
930 |
+
- type: recall_at_3
|
931 |
+
value: 0.07523
|
932 |
+
- type: recall_at_5
|
933 |
+
value: 0.1091
|
934 |
+
- task:
|
935 |
+
type: STS
|
936 |
+
dataset:
|
937 |
+
type: mteb/sts14-sts
|
938 |
+
name: MTEB STS14
|
939 |
+
metrics:
|
940 |
+
- type: cos_sim_pearson
|
941 |
+
value: 0.7535551963935667
|
942 |
+
- type: cos_sim_spearman
|
943 |
+
value: 0.7098892671568665
|
944 |
+
- type: euclidean_pearson
|
945 |
+
value: 0.7324467338564629
|
946 |
+
- type: euclidean_spearman
|
947 |
+
value: 0.7197533151639425
|
948 |
+
- type: manhattan_pearson
|
949 |
+
value: 0.7327765593599381
|
950 |
+
- type: manhattan_spearman
|
951 |
+
value: 0.722221421456084
|
952 |
+
- task:
|
953 |
+
type: Retrieval
|
954 |
+
dataset:
|
955 |
+
type: BeIR/cqadupstack
|
956 |
+
name: MTEB CQADupstackEnglishRetrieval
|
957 |
+
metrics:
|
958 |
+
- type: map_at_1
|
959 |
+
value: 0.12058
|
960 |
+
- type: map_at_10
|
961 |
+
value: 0.16051
|
962 |
+
- type: map_at_100
|
963 |
+
value: 0.16772
|
964 |
+
- type: map_at_1000
|
965 |
+
value: 0.16871
|
966 |
+
- type: map_at_3
|
967 |
+
value: 0.1478
|
968 |
+
- type: map_at_5
|
969 |
+
value: 0.155
|
970 |
+
- type: ndcg_at_1
|
971 |
+
value: 0.1535
|
972 |
+
- type: ndcg_at_10
|
973 |
+
value: 0.18804
|
974 |
+
- type: ndcg_at_100
|
975 |
+
value: 0.22346
|
976 |
+
- type: ndcg_at_1000
|
977 |
+
value: 0.25007
|
978 |
+
- type: ndcg_at_3
|
979 |
+
value: 0.16768
|
980 |
+
- type: ndcg_at_5
|
981 |
+
value: 0.17692
|
982 |
+
- type: precision_at_1
|
983 |
+
value: 0.1535
|
984 |
+
- type: precision_at_10
|
985 |
+
value: 0.0351
|
986 |
+
- type: precision_at_100
|
987 |
+
value: 0.00664
|
988 |
+
- type: precision_at_1000
|
989 |
+
value: 0.00111
|
990 |
+
- type: precision_at_3
|
991 |
+
value: 0.07983
|
992 |
+
- type: precision_at_5
|
993 |
+
value: 0.05656
|
994 |
+
- type: recall_at_1
|
995 |
+
value: 0.12058
|
996 |
+
- type: recall_at_10
|
997 |
+
value: 0.23644
|
998 |
+
- type: recall_at_100
|
999 |
+
value: 0.3976
|
1000 |
+
- type: recall_at_1000
|
1001 |
+
value: 0.5856
|
1002 |
+
- type: recall_at_3
|
1003 |
+
value: 0.17542
|
1004 |
+
- type: recall_at_5
|
1005 |
+
value: 0.20232
|
1006 |
+
- task:
|
1007 |
+
type: Retrieval
|
1008 |
+
dataset:
|
1009 |
+
type: BeIR/cqadupstack
|
1010 |
+
name: MTEB CQADupstackGamingRetrieval
|
1011 |
+
metrics:
|
1012 |
+
- type: map_at_1
|
1013 |
+
value: 0.21183
|
1014 |
+
- type: map_at_10
|
1015 |
+
value: 0.289
|
1016 |
+
- type: map_at_100
|
1017 |
+
value: 0.29858
|
1018 |
+
- type: map_at_1000
|
1019 |
+
value: 0.29954
|
1020 |
+
- type: map_at_3
|
1021 |
+
value: 0.2658
|
1022 |
+
- type: map_at_5
|
1023 |
+
value: 0.27912
|
1024 |
+
- type: ndcg_at_1
|
1025 |
+
value: 0.24765
|
1026 |
+
- type: ndcg_at_10
|
1027 |
+
value: 0.3334
|
1028 |
+
- type: ndcg_at_100
|
1029 |
+
value: 0.37997
|
1030 |
+
- type: ndcg_at_1000
|
1031 |
+
value: 0.40416
|
1032 |
+
- type: ndcg_at_3
|
1033 |
+
value: 0.29045
|
1034 |
+
- type: ndcg_at_5
|
1035 |
+
value: 0.31121
|
1036 |
+
- type: precision_at_1
|
1037 |
+
value: 0.24765
|
1038 |
+
- type: precision_at_10
|
1039 |
+
value: 0.05599
|
1040 |
+
- type: precision_at_100
|
1041 |
+
value: 0.0087
|
1042 |
+
- type: precision_at_1000
|
1043 |
+
value: 0.00115
|
1044 |
+
- type: precision_at_3
|
1045 |
+
value: 0.13271
|
1046 |
+
- type: precision_at_5
|
1047 |
+
value: 0.09367
|
1048 |
+
- type: recall_at_1
|
1049 |
+
value: 0.21183
|
1050 |
+
- type: recall_at_10
|
1051 |
+
value: 0.43875
|
1052 |
+
- type: recall_at_100
|
1053 |
+
value: 0.65005
|
1054 |
+
- type: recall_at_1000
|
1055 |
+
value: 0.83017
|
1056 |
+
- type: recall_at_3
|
1057 |
+
value: 0.32232
|
1058 |
+
- type: recall_at_5
|
1059 |
+
value: 0.37308
|
1060 |
+
- task:
|
1061 |
+
type: Retrieval
|
1062 |
+
dataset:
|
1063 |
+
type: fiqa
|
1064 |
+
name: MTEB FiQA2018
|
1065 |
+
metrics:
|
1066 |
+
- type: map_at_1
|
1067 |
+
value: 0.03637
|
1068 |
+
- type: map_at_10
|
1069 |
+
value: 0.06084
|
1070 |
+
- type: map_at_100
|
1071 |
+
value: 0.06919
|
1072 |
+
- type: map_at_1000
|
1073 |
+
value: 0.07108
|
1074 |
+
- type: map_at_3
|
1075 |
+
value: 0.05071
|
1076 |
+
- type: map_at_5
|
1077 |
+
value: 0.05565
|
1078 |
+
- type: ndcg_at_1
|
1079 |
+
value: 0.07407
|
1080 |
+
- type: ndcg_at_10
|
1081 |
+
value: 0.0894
|
1082 |
+
- type: ndcg_at_100
|
1083 |
+
value: 0.13595
|
1084 |
+
- type: ndcg_at_1000
|
1085 |
+
value: 0.1829
|
1086 |
+
- type: ndcg_at_3
|
1087 |
+
value: 0.07393
|
1088 |
+
- type: ndcg_at_5
|
1089 |
+
value: 0.07854
|
1090 |
+
- type: precision_at_1
|
1091 |
+
value: 0.07407
|
1092 |
+
- type: precision_at_10
|
1093 |
+
value: 0.02778
|
1094 |
+
- type: precision_at_100
|
1095 |
+
value: 0.0075
|
1096 |
+
- type: precision_at_1000
|
1097 |
+
value: 0.00154
|
1098 |
+
- type: precision_at_3
|
1099 |
+
value: 0.05144
|
1100 |
+
- type: precision_at_5
|
1101 |
+
value: 0.03981
|
1102 |
+
- type: recall_at_1
|
1103 |
+
value: 0.03637
|
1104 |
+
- type: recall_at_10
|
1105 |
+
value: 0.11821
|
1106 |
+
- type: recall_at_100
|
1107 |
+
value: 0.3018
|
1108 |
+
- type: recall_at_1000
|
1109 |
+
value: 0.60207
|
1110 |
+
- type: recall_at_3
|
1111 |
+
value: 0.06839
|
1112 |
+
- type: recall_at_5
|
1113 |
+
value: 0.08649
|
1114 |
+
- task:
|
1115 |
+
type: Classification
|
1116 |
+
dataset:
|
1117 |
+
type: mteb/amazon_massive_intent
|
1118 |
+
name: MTEB MassiveIntentClassification (af)
|
1119 |
+
metrics:
|
1120 |
+
- type: accuracy
|
1121 |
+
value: 0.3779421654337593
|
1122 |
+
- type: f1
|
1123 |
+
value: 0.3681580701507746
|
1124 |
+
- task:
|
1125 |
+
type: Classification
|
1126 |
+
dataset:
|
1127 |
+
type: mteb/amazon_massive_intent
|
1128 |
+
name: MTEB MassiveIntentClassification (am)
|
1129 |
+
metrics:
|
1130 |
+
- type: accuracy
|
1131 |
+
value: 0.23722259583053126
|
1132 |
+
- type: f1
|
1133 |
+
value: 0.23235269695764274
|
1134 |
+
- task:
|
1135 |
+
type: Classification
|
1136 |
+
dataset:
|
1137 |
+
type: mteb/amazon_massive_intent
|
1138 |
+
name: MTEB MassiveIntentClassification (ar)
|
1139 |
+
metrics:
|
1140 |
+
- type: accuracy
|
1141 |
+
value: 0.2964021519838601
|
1142 |
+
- type: f1
|
1143 |
+
value: 0.28273175327650135
|
1144 |
+
- task:
|
1145 |
+
type: Classification
|
1146 |
+
dataset:
|
1147 |
+
type: mteb/amazon_massive_intent
|
1148 |
+
name: MTEB MassiveIntentClassification (az)
|
1149 |
+
metrics:
|
1150 |
+
- type: accuracy
|
1151 |
+
value: 0.39475453934095495
|
1152 |
+
- type: f1
|
1153 |
+
value: 0.39259973614151206
|
1154 |
+
- task:
|
1155 |
+
type: Classification
|
1156 |
+
dataset:
|
1157 |
+
type: mteb/amazon_massive_intent
|
1158 |
+
name: MTEB MassiveIntentClassification (bn)
|
1159 |
+
metrics:
|
1160 |
+
- type: accuracy
|
1161 |
+
value: 0.26550100874243443
|
1162 |
+
- type: f1
|
1163 |
+
value: 0.25607924873522975
|
1164 |
+
- task:
|
1165 |
+
type: Classification
|
1166 |
+
dataset:
|
1167 |
+
type: mteb/amazon_massive_intent
|
1168 |
+
name: MTEB MassiveIntentClassification (cy)
|
1169 |
+
metrics:
|
1170 |
+
- type: accuracy
|
1171 |
+
value: 0.38782784129119036
|
1172 |
+
- type: f1
|
1173 |
+
value: 0.3764180582626517
|
1174 |
+
- task:
|
1175 |
+
type: Classification
|
1176 |
+
dataset:
|
1177 |
+
type: mteb/amazon_massive_intent
|
1178 |
+
name: MTEB MassiveIntentClassification (da)
|
1179 |
+
metrics:
|
1180 |
+
- type: accuracy
|
1181 |
+
value: 0.43557498318762605
|
1182 |
+
- type: f1
|
1183 |
+
value: 0.4135305173800667
|
1184 |
+
- task:
|
1185 |
+
type: Classification
|
1186 |
+
dataset:
|
1187 |
+
type: mteb/amazon_massive_intent
|
1188 |
+
name: MTEB MassiveIntentClassification (de)
|
1189 |
+
metrics:
|
1190 |
+
- type: accuracy
|
1191 |
+
value: 0.4039340954942838
|
1192 |
+
- type: f1
|
1193 |
+
value: 0.38333932195289344
|
1194 |
+
- task:
|
1195 |
+
type: Classification
|
1196 |
+
dataset:
|
1197 |
+
type: mteb/amazon_massive_intent
|
1198 |
+
name: MTEB MassiveIntentClassification (el)
|
1199 |
+
metrics:
|
1200 |
+
- type: accuracy
|
1201 |
+
value: 0.3728648285137861
|
1202 |
+
- type: f1
|
1203 |
+
value: 0.36640059066802844
|
1204 |
+
- task:
|
1205 |
+
type: Classification
|
1206 |
+
dataset:
|
1207 |
+
type: mteb/amazon_massive_intent
|
1208 |
+
name: MTEB MassiveIntentClassification (en)
|
1209 |
+
metrics:
|
1210 |
+
- type: accuracy
|
1211 |
+
value: 0.5808002689979825
|
1212 |
+
- type: f1
|
1213 |
+
value: 0.5649243881660991
|
1214 |
+
- task:
|
1215 |
+
type: Classification
|
1216 |
+
dataset:
|
1217 |
+
type: mteb/amazon_massive_intent
|
1218 |
+
name: MTEB MassiveIntentClassification (es)
|
1219 |
+
metrics:
|
1220 |
+
- type: accuracy
|
1221 |
+
value: 0.411768661735037
|
1222 |
+
- type: f1
|
1223 |
+
value: 0.4066779962225799
|
1224 |
+
- task:
|
1225 |
+
type: Classification
|
1226 |
+
dataset:
|
1227 |
+
type: mteb/amazon_massive_intent
|
1228 |
+
name: MTEB MassiveIntentClassification (fa)
|
1229 |
+
metrics:
|
1230 |
+
- type: accuracy
|
1231 |
+
value: 0.36422326832548757
|
1232 |
+
- type: f1
|
1233 |
+
value: 0.34644173804288503
|
1234 |
+
- task:
|
1235 |
+
type: Classification
|
1236 |
+
dataset:
|
1237 |
+
type: mteb/amazon_massive_intent
|
1238 |
+
name: MTEB MassiveIntentClassification (fi)
|
1239 |
+
metrics:
|
1240 |
+
- type: accuracy
|
1241 |
+
value: 0.3875588433086752
|
1242 |
+
- type: f1
|
1243 |
+
value: 0.3726725894668694
|
1244 |
+
- task:
|
1245 |
+
type: Classification
|
1246 |
+
dataset:
|
1247 |
+
type: mteb/amazon_massive_intent
|
1248 |
+
name: MTEB MassiveIntentClassification (fr)
|
1249 |
+
metrics:
|
1250 |
+
- type: accuracy
|
1251 |
+
value: 0.43671822461331533
|
1252 |
+
- type: f1
|
1253 |
+
value: 0.423518466245666
|
1254 |
+
- task:
|
1255 |
+
type: Classification
|
1256 |
+
dataset:
|
1257 |
+
type: mteb/amazon_massive_intent
|
1258 |
+
name: MTEB MassiveIntentClassification (he)
|
1259 |
+
metrics:
|
1260 |
+
- type: accuracy
|
1261 |
+
value: 0.3198049764626766
|
1262 |
+
- type: f1
|
1263 |
+
value: 0.3055792887280901
|
1264 |
+
- task:
|
1265 |
+
type: Classification
|
1266 |
+
dataset:
|
1267 |
+
type: mteb/amazon_massive_intent
|
1268 |
+
name: MTEB MassiveIntentClassification (hi)
|
1269 |
+
metrics:
|
1270 |
+
- type: accuracy
|
1271 |
+
value: 0.2803967720242098
|
1272 |
+
- type: f1
|
1273 |
+
value: 0.28428418145508305
|
1274 |
+
- task:
|
1275 |
+
type: Classification
|
1276 |
+
dataset:
|
1277 |
+
type: mteb/amazon_massive_intent
|
1278 |
+
name: MTEB MassiveIntentClassification (hu)
|
1279 |
+
metrics:
|
1280 |
+
- type: accuracy
|
1281 |
+
value: 0.3813718897108272
|
1282 |
+
- type: f1
|
1283 |
+
value: 0.3705740698819687
|
1284 |
+
- task:
|
1285 |
+
type: Classification
|
1286 |
+
dataset:
|
1287 |
+
type: mteb/amazon_massive_intent
|
1288 |
+
name: MTEB MassiveIntentClassification (hy)
|
1289 |
+
metrics:
|
1290 |
+
- type: accuracy
|
1291 |
+
value: 0.2605245460659045
|
1292 |
+
- type: f1
|
1293 |
+
value: 0.2525483953344816
|
1294 |
+
- task:
|
1295 |
+
type: Classification
|
1296 |
+
dataset:
|
1297 |
+
type: mteb/amazon_massive_intent
|
1298 |
+
name: MTEB MassiveIntentClassification (id)
|
1299 |
+
metrics:
|
1300 |
+
- type: accuracy
|
1301 |
+
value: 0.41156691324815065
|
1302 |
+
- type: f1
|
1303 |
+
value: 0.40837150332476047
|
1304 |
+
- task:
|
1305 |
+
type: Classification
|
1306 |
+
dataset:
|
1307 |
+
type: mteb/amazon_massive_intent
|
1308 |
+
name: MTEB MassiveIntentClassification (is)
|
1309 |
+
metrics:
|
1310 |
+
- type: accuracy
|
1311 |
+
value: 0.38628110289172835
|
1312 |
+
- type: f1
|
1313 |
+
value: 0.37676919012460314
|
1314 |
+
- task:
|
1315 |
+
type: Classification
|
1316 |
+
dataset:
|
1317 |
+
type: mteb/amazon_massive_intent
|
1318 |
+
name: MTEB MassiveIntentClassification (it)
|
1319 |
+
metrics:
|
1320 |
+
- type: accuracy
|
1321 |
+
value: 0.440383322125084
|
1322 |
+
- type: f1
|
1323 |
+
value: 0.43772590108774556
|
1324 |
+
- task:
|
1325 |
+
type: Classification
|
1326 |
+
dataset:
|
1327 |
+
type: mteb/amazon_massive_intent
|
1328 |
+
name: MTEB MassiveIntentClassification (ja)
|
1329 |
+
metrics:
|
1330 |
+
- type: accuracy
|
1331 |
+
value: 0.46207128446536655
|
1332 |
+
- type: f1
|
1333 |
+
value: 0.44666328759408236
|
1334 |
+
- task:
|
1335 |
+
type: Classification
|
1336 |
+
dataset:
|
1337 |
+
type: mteb/amazon_massive_intent
|
1338 |
+
name: MTEB MassiveIntentClassification (jv)
|
1339 |
+
metrics:
|
1340 |
+
- type: accuracy
|
1341 |
+
value: 0.3760591795561533
|
1342 |
+
- type: f1
|
1343 |
+
value: 0.36581071742378013
|
1344 |
+
- task:
|
1345 |
+
type: Classification
|
1346 |
+
dataset:
|
1347 |
+
type: mteb/amazon_massive_intent
|
1348 |
+
name: MTEB MassiveIntentClassification (ka)
|
1349 |
+
metrics:
|
1350 |
+
- type: accuracy
|
1351 |
+
value: 0.24472091459314052
|
1352 |
+
- type: f1
|
1353 |
+
value: 0.24238209697895607
|
1354 |
+
- task:
|
1355 |
+
type: Classification
|
1356 |
+
dataset:
|
1357 |
+
type: mteb/amazon_massive_intent
|
1358 |
+
name: MTEB MassiveIntentClassification (km)
|
1359 |
+
metrics:
|
1360 |
+
- type: accuracy
|
1361 |
+
value: 0.2623739071956961
|
1362 |
+
- type: f1
|
1363 |
+
value: 0.2537878315084505
|
1364 |
+
- task:
|
1365 |
+
type: Classification
|
1366 |
+
dataset:
|
1367 |
+
type: mteb/amazon_massive_intent
|
1368 |
+
name: MTEB MassiveIntentClassification (kn)
|
1369 |
+
metrics:
|
1370 |
+
- type: accuracy
|
1371 |
+
value: 0.17831203765971754
|
1372 |
+
- type: f1
|
1373 |
+
value: 0.17275078420466344
|
1374 |
+
- task:
|
1375 |
+
type: Classification
|
1376 |
+
dataset:
|
1377 |
+
type: mteb/amazon_massive_intent
|
1378 |
+
name: MTEB MassiveIntentClassification (ko)
|
1379 |
+
metrics:
|
1380 |
+
- type: accuracy
|
1381 |
+
value: 0.37266308002689974
|
1382 |
+
- type: f1
|
1383 |
+
value: 0.3692473791708214
|
1384 |
+
- task:
|
1385 |
+
type: Classification
|
1386 |
+
dataset:
|
1387 |
+
type: mteb/amazon_massive_intent
|
1388 |
+
name: MTEB MassiveIntentClassification (lv)
|
1389 |
+
metrics:
|
1390 |
+
- type: accuracy
|
1391 |
+
value: 0.4093140551445864
|
1392 |
+
- type: f1
|
1393 |
+
value: 0.4082522788964197
|
1394 |
+
- task:
|
1395 |
+
type: Classification
|
1396 |
+
dataset:
|
1397 |
+
type: mteb/amazon_massive_intent
|
1398 |
+
name: MTEB MassiveIntentClassification (ml)
|
1399 |
+
metrics:
|
1400 |
+
- type: accuracy
|
1401 |
+
value: 0.1788500336247478
|
1402 |
+
- type: f1
|
1403 |
+
value: 0.17621569082971816
|
1404 |
+
- task:
|
1405 |
+
type: Classification
|
1406 |
+
dataset:
|
1407 |
+
type: mteb/amazon_massive_intent
|
1408 |
+
name: MTEB MassiveIntentClassification (mn)
|
1409 |
+
metrics:
|
1410 |
+
- type: accuracy
|
1411 |
+
value: 0.3297579018157364
|
1412 |
+
- type: f1
|
1413 |
+
value: 0.33402014633349664
|
1414 |
+
- task:
|
1415 |
+
type: Classification
|
1416 |
+
dataset:
|
1417 |
+
type: mteb/amazon_massive_intent
|
1418 |
+
name: MTEB MassiveIntentClassification (ms)
|
1419 |
+
metrics:
|
1420 |
+
- type: accuracy
|
1421 |
+
value: 0.40911230665770015
|
1422 |
+
- type: f1
|
1423 |
+
value: 0.4009538559124075
|
1424 |
+
- task:
|
1425 |
+
type: Classification
|
1426 |
+
dataset:
|
1427 |
+
type: mteb/amazon_massive_intent
|
1428 |
+
name: MTEB MassiveIntentClassification (my)
|
1429 |
+
metrics:
|
1430 |
+
- type: accuracy
|
1431 |
+
value: 0.17834566240753194
|
1432 |
+
- type: f1
|
1433 |
+
value: 0.17006381849454313
|
1434 |
+
- task:
|
1435 |
+
type: Classification
|
1436 |
+
dataset:
|
1437 |
+
type: mteb/amazon_massive_intent
|
1438 |
+
name: MTEB MassiveIntentClassification (nb)
|
1439 |
+
metrics:
|
1440 |
+
- type: accuracy
|
1441 |
+
value: 0.3947881640887693
|
1442 |
+
- type: f1
|
1443 |
+
value: 0.37819934317839304
|
1444 |
+
- task:
|
1445 |
+
type: Classification
|
1446 |
+
dataset:
|
1447 |
+
type: mteb/amazon_massive_intent
|
1448 |
+
name: MTEB MassiveIntentClassification (nl)
|
1449 |
+
metrics:
|
1450 |
+
- type: accuracy
|
1451 |
+
value: 0.4176193678547412
|
1452 |
+
- type: f1
|
1453 |
+
value: 0.40281991759509694
|
1454 |
+
- task:
|
1455 |
+
type: Classification
|
1456 |
+
dataset:
|
1457 |
+
type: mteb/amazon_massive_intent
|
1458 |
+
name: MTEB MassiveIntentClassification (pl)
|
1459 |
+
metrics:
|
1460 |
+
- type: accuracy
|
1461 |
+
value: 0.4261936785474109
|
1462 |
+
- type: f1
|
1463 |
+
value: 0.40836739146499046
|
1464 |
+
- task:
|
1465 |
+
type: Classification
|
1466 |
+
dataset:
|
1467 |
+
type: mteb/amazon_massive_intent
|
1468 |
+
name: MTEB MassiveIntentClassification (pt)
|
1469 |
+
metrics:
|
1470 |
+
- type: accuracy
|
1471 |
+
value: 0.44542703429724273
|
1472 |
+
- type: f1
|
1473 |
+
value: 0.43452431642784484
|
1474 |
+
- task:
|
1475 |
+
type: Classification
|
1476 |
+
dataset:
|
1477 |
+
type: mteb/amazon_massive_intent
|
1478 |
+
name: MTEB MassiveIntentClassification (ro)
|
1479 |
+
metrics:
|
1480 |
+
- type: accuracy
|
1481 |
+
value: 0.3996973772696705
|
1482 |
+
- type: f1
|
1483 |
+
value: 0.3874209466530094
|
1484 |
+
- task:
|
1485 |
+
type: Classification
|
1486 |
+
dataset:
|
1487 |
+
type: mteb/amazon_massive_intent
|
1488 |
+
name: MTEB MassiveIntentClassification (ru)
|
1489 |
+
metrics:
|
1490 |
+
- type: accuracy
|
1491 |
+
value: 0.37461331540013454
|
1492 |
+
- type: f1
|
1493 |
+
value: 0.3691132021821187
|
1494 |
+
- task:
|
1495 |
+
type: Classification
|
1496 |
+
dataset:
|
1497 |
+
type: mteb/amazon_massive_intent
|
1498 |
+
name: MTEB MassiveIntentClassification (sl)
|
1499 |
+
metrics:
|
1500 |
+
- type: accuracy
|
1501 |
+
value: 0.3828850033624748
|
1502 |
+
- type: f1
|
1503 |
+
value: 0.3737259394049676
|
1504 |
+
- task:
|
1505 |
+
type: Classification
|
1506 |
+
dataset:
|
1507 |
+
type: mteb/amazon_massive_intent
|
1508 |
+
name: MTEB MassiveIntentClassification (sq)
|
1509 |
+
metrics:
|
1510 |
+
- type: accuracy
|
1511 |
+
value: 0.4095494283792872
|
1512 |
+
- type: f1
|
1513 |
+
value: 0.3976770790286908
|
1514 |
+
- task:
|
1515 |
+
type: Classification
|
1516 |
+
dataset:
|
1517 |
+
type: mteb/amazon_massive_intent
|
1518 |
+
name: MTEB MassiveIntentClassification (sv)
|
1519 |
+
metrics:
|
1520 |
+
- type: accuracy
|
1521 |
+
value: 0.4185272360457296
|
1522 |
+
- type: f1
|
1523 |
+
value: 0.4042848260365438
|
1524 |
+
- task:
|
1525 |
+
type: Classification
|
1526 |
+
dataset:
|
1527 |
+
type: mteb/amazon_massive_intent
|
1528 |
+
name: MTEB MassiveIntentClassification (sw)
|
1529 |
+
metrics:
|
1530 |
+
- type: accuracy
|
1531 |
+
value: 0.3832885003362475
|
1532 |
+
- type: f1
|
1533 |
+
value: 0.3690334596675622
|
1534 |
+
- task:
|
1535 |
+
type: Classification
|
1536 |
+
dataset:
|
1537 |
+
type: mteb/amazon_massive_intent
|
1538 |
+
name: MTEB MassiveIntentClassification (ta)
|
1539 |
+
metrics:
|
1540 |
+
- type: accuracy
|
1541 |
+
value: 0.19031607262945527
|
1542 |
+
- type: f1
|
1543 |
+
value: 0.18665103063257613
|
1544 |
+
- task:
|
1545 |
+
type: Classification
|
1546 |
+
dataset:
|
1547 |
+
type: mteb/amazon_massive_intent
|
1548 |
+
name: MTEB MassiveIntentClassification (te)
|
1549 |
+
metrics:
|
1550 |
+
- type: accuracy
|
1551 |
+
value: 0.1938466711499664
|
1552 |
+
- type: f1
|
1553 |
+
value: 0.19186399376652535
|
1554 |
+
- task:
|
1555 |
+
type: Classification
|
1556 |
+
dataset:
|
1557 |
+
type: mteb/amazon_massive_intent
|
1558 |
+
name: MTEB MassiveIntentClassification (th)
|
1559 |
+
metrics:
|
1560 |
+
- type: accuracy
|
1561 |
+
value: 0.34088769334229996
|
1562 |
+
- type: f1
|
1563 |
+
value: 0.3420383086009429
|
1564 |
+
- task:
|
1565 |
+
type: Classification
|
1566 |
+
dataset:
|
1567 |
+
type: mteb/amazon_massive_intent
|
1568 |
+
name: MTEB MassiveIntentClassification (tl)
|
1569 |
+
metrics:
|
1570 |
+
- type: accuracy
|
1571 |
+
value: 0.40285810356422325
|
1572 |
+
- type: f1
|
1573 |
+
value: 0.39361500249640413
|
1574 |
+
- task:
|
1575 |
+
type: Classification
|
1576 |
+
dataset:
|
1577 |
+
type: mteb/amazon_massive_intent
|
1578 |
+
name: MTEB MassiveIntentClassification (tr)
|
1579 |
+
metrics:
|
1580 |
+
- type: accuracy
|
1581 |
+
value: 0.38860121049092133
|
1582 |
+
- type: f1
|
1583 |
+
value: 0.3781916859627235
|
1584 |
+
- task:
|
1585 |
+
type: Classification
|
1586 |
+
dataset:
|
1587 |
+
type: mteb/amazon_massive_intent
|
1588 |
+
name: MTEB MassiveIntentClassification (ur)
|
1589 |
+
metrics:
|
1590 |
+
- type: accuracy
|
1591 |
+
value: 0.27834566240753195
|
1592 |
+
- type: f1
|
1593 |
+
value: 0.26898389386106486
|
1594 |
+
- task:
|
1595 |
+
type: Classification
|
1596 |
+
dataset:
|
1597 |
+
type: mteb/amazon_massive_intent
|
1598 |
+
name: MTEB MassiveIntentClassification (vi)
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 0.38705447209145927
|
1602 |
+
- type: f1
|
1603 |
+
value: 0.3828002644202441
|
1604 |
+
- task:
|
1605 |
+
type: Classification
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/amazon_massive_intent
|
1608 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
1609 |
+
metrics:
|
1610 |
+
- type: accuracy
|
1611 |
+
value: 0.45780094149293876
|
1612 |
+
- type: f1
|
1613 |
+
value: 0.4421526778674136
|
1614 |
+
- task:
|
1615 |
+
type: Classification
|
1616 |
+
dataset:
|
1617 |
+
type: mteb/amazon_massive_intent
|
1618 |
+
name: MTEB MassiveIntentClassification (zh-TW)
|
1619 |
+
metrics:
|
1620 |
+
- type: accuracy
|
1621 |
+
value: 0.4232010759919301
|
1622 |
+
- type: f1
|
1623 |
+
value: 0.4225772977490916
|
1624 |
+
- task:
|
1625 |
+
type: Classification
|
1626 |
+
dataset:
|
1627 |
+
type: mteb/amazon_polarity
|
1628 |
+
name: MTEB AmazonPolarityClassification
|
1629 |
+
metrics:
|
1630 |
+
- type: accuracy
|
1631 |
+
value: 0.74938225
|
1632 |
+
- type: ap
|
1633 |
+
value: 0.6958187110320567
|
1634 |
+
- type: f1
|
1635 |
+
value: 0.7472744058439321
|
1636 |
+
- task:
|
1637 |
+
type: Retrieval
|
1638 |
+
dataset:
|
1639 |
+
type: dbpedia-entity
|
1640 |
+
name: MTEB DBPedia
|
1641 |
+
metrics:
|
1642 |
+
- type: map_at_1
|
1643 |
+
value: 0.01764
|
1644 |
+
- type: map_at_10
|
1645 |
+
value: 0.0386
|
1646 |
+
- type: map_at_100
|
1647 |
+
value: 0.05457
|
1648 |
+
- type: map_at_1000
|
1649 |
+
value: 0.05938
|
1650 |
+
- type: map_at_3
|
1651 |
+
value: 0.02667
|
1652 |
+
- type: map_at_5
|
1653 |
+
value: 0.0322
|
1654 |
+
- type: ndcg_at_1
|
1655 |
+
value: 0.14
|
1656 |
+
- type: ndcg_at_10
|
1657 |
+
value: 0.10868
|
1658 |
+
- type: ndcg_at_100
|
1659 |
+
value: 0.12866
|
1660 |
+
- type: ndcg_at_1000
|
1661 |
+
value: 0.1743
|
1662 |
+
- type: ndcg_at_3
|
1663 |
+
value: 0.11943
|
1664 |
+
- type: ndcg_at_5
|
1665 |
+
value: 0.1166
|
1666 |
+
- type: precision_at_1
|
1667 |
+
value: 0.1925
|
1668 |
+
- type: precision_at_10
|
1669 |
+
value: 0.10275
|
1670 |
+
- type: precision_at_100
|
1671 |
+
value: 0.03527
|
1672 |
+
- type: precision_at_1000
|
1673 |
+
value: 0.00912
|
1674 |
+
- type: precision_at_3
|
1675 |
+
value: 0.14917
|
1676 |
+
- type: precision_at_5
|
1677 |
+
value: 0.135
|
1678 |
+
- type: recall_at_1
|
1679 |
+
value: 0.01764
|
1680 |
+
- type: recall_at_10
|
1681 |
+
value: 0.06609
|
1682 |
+
- type: recall_at_100
|
1683 |
+
value: 0.17616
|
1684 |
+
- type: recall_at_1000
|
1685 |
+
value: 0.33085
|
1686 |
+
- type: recall_at_3
|
1687 |
+
value: 0.03115
|
1688 |
+
- type: recall_at_5
|
1689 |
+
value: 0.04605
|
1690 |
+
- task:
|
1691 |
+
type: Retrieval
|
1692 |
+
dataset:
|
1693 |
+
type: fever
|
1694 |
+
name: MTEB FEVER
|
1695 |
+
metrics:
|
1696 |
+
- type: map_at_1
|
1697 |
+
value: 0.11497
|
1698 |
+
- type: map_at_10
|
1699 |
+
value: 0.15744
|
1700 |
+
- type: map_at_100
|
1701 |
+
value: 0.163
|
1702 |
+
- type: map_at_1000
|
1703 |
+
value: 0.16365
|
1704 |
+
- type: map_at_3
|
1705 |
+
value: 0.1444
|
1706 |
+
- type: map_at_5
|
1707 |
+
value: 0.1518
|
1708 |
+
- type: ndcg_at_1
|
1709 |
+
value: 0.12346
|
1710 |
+
- type: ndcg_at_10
|
1711 |
+
value: 0.18399
|
1712 |
+
- type: ndcg_at_100
|
1713 |
+
value: 0.21399
|
1714 |
+
- type: ndcg_at_1000
|
1715 |
+
value: 0.23442
|
1716 |
+
- type: ndcg_at_3
|
1717 |
+
value: 0.15695
|
1718 |
+
- type: ndcg_at_5
|
1719 |
+
value: 0.17027
|
1720 |
+
- type: precision_at_1
|
1721 |
+
value: 0.12346
|
1722 |
+
- type: precision_at_10
|
1723 |
+
value: 0.02798
|
1724 |
+
- type: precision_at_100
|
1725 |
+
value: 0.00445
|
1726 |
+
- type: precision_at_1000
|
1727 |
+
value: 0.00063
|
1728 |
+
- type: precision_at_3
|
1729 |
+
value: 0.06586
|
1730 |
+
- type: precision_at_5
|
1731 |
+
value: 0.04665
|
1732 |
+
- type: recall_at_1
|
1733 |
+
value: 0.11497
|
1734 |
+
- type: recall_at_10
|
1735 |
+
value: 0.25636
|
1736 |
+
- type: recall_at_100
|
1737 |
+
value: 0.39894
|
1738 |
+
- type: recall_at_1000
|
1739 |
+
value: 0.56181
|
1740 |
+
- type: recall_at_3
|
1741 |
+
value: 0.18273
|
1742 |
+
- type: recall_at_5
|
1743 |
+
value: 0.21474
|
1744 |
+
- task:
|
1745 |
+
type: Retrieval
|
1746 |
+
dataset:
|
1747 |
+
type: BeIR/cqadupstack
|
1748 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
1749 |
+
metrics:
|
1750 |
+
- type: map_at_1
|
1751 |
+
value: 0.12598
|
1752 |
+
- type: map_at_10
|
1753 |
+
value: 0.17304
|
1754 |
+
- type: map_at_100
|
1755 |
+
value: 0.18209
|
1756 |
+
- type: map_at_1000
|
1757 |
+
value: 0.18328
|
1758 |
+
- type: map_at_3
|
1759 |
+
value: 0.15784
|
1760 |
+
- type: map_at_5
|
1761 |
+
value: 0.1667
|
1762 |
+
- type: ndcg_at_1
|
1763 |
+
value: 0.15868
|
1764 |
+
- type: ndcg_at_10
|
1765 |
+
value: 0.20623
|
1766 |
+
- type: ndcg_at_100
|
1767 |
+
value: 0.25093
|
1768 |
+
- type: ndcg_at_1000
|
1769 |
+
value: 0.28498
|
1770 |
+
- type: ndcg_at_3
|
1771 |
+
value: 0.17912
|
1772 |
+
- type: ndcg_at_5
|
1773 |
+
value: 0.19198
|
1774 |
+
- type: precision_at_1
|
1775 |
+
value: 0.15868
|
1776 |
+
- type: precision_at_10
|
1777 |
+
value: 0.03767
|
1778 |
+
- type: precision_at_100
|
1779 |
+
value: 0.00716
|
1780 |
+
- type: precision_at_1000
|
1781 |
+
value: 0.00118
|
1782 |
+
- type: precision_at_3
|
1783 |
+
value: 0.08638
|
1784 |
+
- type: precision_at_5
|
1785 |
+
value: 0.0621
|
1786 |
+
- type: recall_at_1
|
1787 |
+
value: 0.12598
|
1788 |
+
- type: recall_at_10
|
1789 |
+
value: 0.27144
|
1790 |
+
- type: recall_at_100
|
1791 |
+
value: 0.46817
|
1792 |
+
- type: recall_at_1000
|
1793 |
+
value: 0.71861
|
1794 |
+
- type: recall_at_3
|
1795 |
+
value: 0.19231
|
1796 |
+
- type: recall_at_5
|
1797 |
+
value: 0.22716
|
1798 |
+
- task:
|
1799 |
+
type: STS
|
1800 |
+
dataset:
|
1801 |
+
type: mteb/sts22-crosslingual-sts
|
1802 |
+
name: MTEB STS22 (en)
|
1803 |
+
metrics:
|
1804 |
+
- type: cos_sim_pearson
|
1805 |
+
value: 0.5917638344661753
|
1806 |
+
- type: cos_sim_spearman
|
1807 |
+
value: 0.5963676007113087
|
1808 |
+
- type: euclidean_pearson
|
1809 |
+
value: 0.5668753290255448
|
1810 |
+
- type: euclidean_spearman
|
1811 |
+
value: 0.5761328025857448
|
1812 |
+
- type: manhattan_pearson
|
1813 |
+
value: 0.5692312052723706
|
1814 |
+
- type: manhattan_spearman
|
1815 |
+
value: 0.5776774918418505
|
1816 |
+
- task:
|
1817 |
+
type: STS
|
1818 |
+
dataset:
|
1819 |
+
type: mteb/sts22-crosslingual-sts
|
1820 |
+
name: MTEB STS22 (de)
|
1821 |
+
metrics:
|
1822 |
+
- type: cos_sim_pearson
|
1823 |
+
value: 0.10322254716987457
|
1824 |
+
- type: cos_sim_spearman
|
1825 |
+
value: 0.110033092996862
|
1826 |
+
- type: euclidean_pearson
|
1827 |
+
value: 0.06006926471684402
|
1828 |
+
- type: euclidean_spearman
|
1829 |
+
value: 0.10972140246688376
|
1830 |
+
- type: manhattan_pearson
|
1831 |
+
value: 0.05933298751861177
|
1832 |
+
- type: manhattan_spearman
|
1833 |
+
value: 0.11030111585680233
|
1834 |
+
- task:
|
1835 |
+
type: STS
|
1836 |
+
dataset:
|
1837 |
+
type: mteb/sts22-crosslingual-sts
|
1838 |
+
name: MTEB STS22 (es)
|
1839 |
+
metrics:
|
1840 |
+
- type: cos_sim_pearson
|
1841 |
+
value: 0.4338031880545056
|
1842 |
+
- type: cos_sim_spearman
|
1843 |
+
value: 0.4305358201410913
|
1844 |
+
- type: euclidean_pearson
|
1845 |
+
value: 0.42723271963625525
|
1846 |
+
- type: euclidean_spearman
|
1847 |
+
value: 0.4255163899944477
|
1848 |
+
- type: manhattan_pearson
|
1849 |
+
value: 0.44015574997805873
|
1850 |
+
- type: manhattan_spearman
|
1851 |
+
value: 0.43124732216158546
|
1852 |
+
- task:
|
1853 |
+
type: STS
|
1854 |
+
dataset:
|
1855 |
+
type: mteb/sts22-crosslingual-sts
|
1856 |
+
name: MTEB STS22 (pl)
|
1857 |
+
metrics:
|
1858 |
+
- type: cos_sim_pearson
|
1859 |
+
value: 0.042912905043631364
|
1860 |
+
- type: cos_sim_spearman
|
1861 |
+
value: 0.1491272748789348
|
1862 |
+
- type: euclidean_pearson
|
1863 |
+
value: 0.032855132112394485
|
1864 |
+
- type: euclidean_spearman
|
1865 |
+
value: 0.16575204463951024
|
1866 |
+
- type: manhattan_pearson
|
1867 |
+
value: 0.03239877672346581
|
1868 |
+
- type: manhattan_spearman
|
1869 |
+
value: 0.16841985772913856
|
1870 |
+
- task:
|
1871 |
+
type: STS
|
1872 |
+
dataset:
|
1873 |
+
type: mteb/sts22-crosslingual-sts
|
1874 |
+
name: MTEB STS22 (tr)
|
1875 |
+
metrics:
|
1876 |
+
- type: cos_sim_pearson
|
1877 |
+
value: 0.041027394985558165
|
1878 |
+
- type: cos_sim_spearman
|
1879 |
+
value: 0.03818238576547375
|
1880 |
+
- type: euclidean_pearson
|
1881 |
+
value: 0.023181033496453556
|
1882 |
+
- type: euclidean_spearman
|
1883 |
+
value: 0.051826811802703564
|
1884 |
+
- type: manhattan_pearson
|
1885 |
+
value: 0.04800617926525645
|
1886 |
+
- type: manhattan_spearman
|
1887 |
+
value: 0.06738401400306251
|
1888 |
+
- task:
|
1889 |
+
type: STS
|
1890 |
+
dataset:
|
1891 |
+
type: mteb/sts22-crosslingual-sts
|
1892 |
+
name: MTEB STS22 (ar)
|
1893 |
+
metrics:
|
1894 |
+
- type: cos_sim_pearson
|
1895 |
+
value: 0.0238765395226737
|
1896 |
+
- type: cos_sim_spearman
|
1897 |
+
value: 0.051738993911623274
|
1898 |
+
- type: euclidean_pearson
|
1899 |
+
value: 0.030710263954769824
|
1900 |
+
- type: euclidean_spearman
|
1901 |
+
value: 0.050492229090398195
|
1902 |
+
- type: manhattan_pearson
|
1903 |
+
value: 0.0378263141098617
|
1904 |
+
- type: manhattan_spearman
|
1905 |
+
value: 0.05042238232170212
|
1906 |
+
- task:
|
1907 |
+
type: STS
|
1908 |
+
dataset:
|
1909 |
+
type: mteb/sts22-crosslingual-sts
|
1910 |
+
name: MTEB STS22 (ru)
|
1911 |
+
metrics:
|
1912 |
+
- type: cos_sim_pearson
|
1913 |
+
value: 0.07673549067267635
|
1914 |
+
- type: cos_sim_spearman
|
1915 |
+
value: 0.03363121525687889
|
1916 |
+
- type: euclidean_pearson
|
1917 |
+
value: 0.0464331702652217
|
1918 |
+
- type: euclidean_spearman
|
1919 |
+
value: 0.036129205171334326
|
1920 |
+
- type: manhattan_pearson
|
1921 |
+
value: 0.040112317360761963
|
1922 |
+
- type: manhattan_spearman
|
1923 |
+
value: 0.03233959766173701
|
1924 |
+
- task:
|
1925 |
+
type: STS
|
1926 |
+
dataset:
|
1927 |
+
type: mteb/sts22-crosslingual-sts
|
1928 |
+
name: MTEB STS22 (zh)
|
1929 |
+
metrics:
|
1930 |
+
- type: cos_sim_pearson
|
1931 |
+
value: 0.0006167614416104335
|
1932 |
+
- type: cos_sim_spearman
|
1933 |
+
value: 0.06521685391703255
|
1934 |
+
- type: euclidean_pearson
|
1935 |
+
value: 0.048845725790690325
|
1936 |
+
- type: euclidean_spearman
|
1937 |
+
value: 0.0559058032900239
|
1938 |
+
- type: manhattan_pearson
|
1939 |
+
value: 0.06139838096573896
|
1940 |
+
- type: manhattan_spearman
|
1941 |
+
value: 0.050060884837066215
|
1942 |
+
- task:
|
1943 |
+
type: STS
|
1944 |
+
dataset:
|
1945 |
+
type: mteb/sts22-crosslingual-sts
|
1946 |
+
name: MTEB STS22 (fr)
|
1947 |
+
metrics:
|
1948 |
+
- type: cos_sim_pearson
|
1949 |
+
value: 0.5319490347682836
|
1950 |
+
- type: cos_sim_spearman
|
1951 |
+
value: 0.5456055727079527
|
1952 |
+
- type: euclidean_pearson
|
1953 |
+
value: 0.5255574442039842
|
1954 |
+
- type: euclidean_spearman
|
1955 |
+
value: 0.5294640154371587
|
1956 |
+
- type: manhattan_pearson
|
1957 |
+
value: 0.532759930404542
|
1958 |
+
- type: manhattan_spearman
|
1959 |
+
value: 0.5317456150351015
|
1960 |
+
- task:
|
1961 |
+
type: STS
|
1962 |
+
dataset:
|
1963 |
+
type: mteb/sts22-crosslingual-sts
|
1964 |
+
name: MTEB STS22 (de-en)
|
1965 |
+
metrics:
|
1966 |
+
- type: cos_sim_pearson
|
1967 |
+
value: 0.5115115853012214
|
1968 |
+
- type: cos_sim_spearman
|
1969 |
+
value: 0.5392692508173665
|
1970 |
+
- type: euclidean_pearson
|
1971 |
+
value: 0.4455629287737235
|
1972 |
+
- type: euclidean_spearman
|
1973 |
+
value: 0.46222372143731383
|
1974 |
+
- type: manhattan_pearson
|
1975 |
+
value: 0.42831322151459006
|
1976 |
+
- type: manhattan_spearman
|
1977 |
+
value: 0.4570991764985799
|
1978 |
+
- task:
|
1979 |
+
type: STS
|
1980 |
+
dataset:
|
1981 |
+
type: mteb/sts22-crosslingual-sts
|
1982 |
+
name: MTEB STS22 (es-en)
|
1983 |
+
metrics:
|
1984 |
+
- type: cos_sim_pearson
|
1985 |
+
value: 0.30361948851267917
|
1986 |
+
- type: cos_sim_spearman
|
1987 |
+
value: 0.32739632941633834
|
1988 |
+
- type: euclidean_pearson
|
1989 |
+
value: 0.2983135800843496
|
1990 |
+
- type: euclidean_spearman
|
1991 |
+
value: 0.3111440600132692
|
1992 |
+
- type: manhattan_pearson
|
1993 |
+
value: 0.31264502938148286
|
1994 |
+
- type: manhattan_spearman
|
1995 |
+
value: 0.33311204075347495
|
1996 |
+
- task:
|
1997 |
+
type: STS
|
1998 |
+
dataset:
|
1999 |
+
type: mteb/sts22-crosslingual-sts
|
2000 |
+
name: MTEB STS22 (it)
|
2001 |
+
metrics:
|
2002 |
+
- type: cos_sim_pearson
|
2003 |
+
value: 0.3523883630335275
|
2004 |
+
- type: cos_sim_spearman
|
2005 |
+
value: 0.33677970820867037
|
2006 |
+
- type: euclidean_pearson
|
2007 |
+
value: 0.34878640693874546
|
2008 |
+
- type: euclidean_spearman
|
2009 |
+
value: 0.33525189235133496
|
2010 |
+
- type: manhattan_pearson
|
2011 |
+
value: 0.3422761246389947
|
2012 |
+
- type: manhattan_spearman
|
2013 |
+
value: 0.32713218497609176
|
2014 |
+
- task:
|
2015 |
+
type: STS
|
2016 |
+
dataset:
|
2017 |
+
type: mteb/sts22-crosslingual-sts
|
2018 |
+
name: MTEB STS22 (pl-en)
|
2019 |
+
metrics:
|
2020 |
+
- type: cos_sim_pearson
|
2021 |
+
value: 0.19809302548119545
|
2022 |
+
- type: cos_sim_spearman
|
2023 |
+
value: 0.205403702021155
|
2024 |
+
- type: euclidean_pearson
|
2025 |
+
value: 0.23006803962133016
|
2026 |
+
- type: euclidean_spearman
|
2027 |
+
value: 0.2296270653079511
|
2028 |
+
- type: manhattan_pearson
|
2029 |
+
value: 0.2540168317585851
|
2030 |
+
- type: manhattan_spearman
|
2031 |
+
value: 0.25421508137540866
|
2032 |
+
- task:
|
2033 |
+
type: STS
|
2034 |
+
dataset:
|
2035 |
+
type: mteb/sts22-crosslingual-sts
|
2036 |
+
name: MTEB STS22 (zh-en)
|
2037 |
+
metrics:
|
2038 |
+
- type: cos_sim_pearson
|
2039 |
+
value: 0.20393500955410487
|
2040 |
+
- type: cos_sim_spearman
|
2041 |
+
value: 0.267057136930116
|
2042 |
+
- type: euclidean_pearson
|
2043 |
+
value: 0.18168376767724584
|
2044 |
+
- type: euclidean_spearman
|
2045 |
+
value: 0.19260826601517245
|
2046 |
+
- type: manhattan_pearson
|
2047 |
+
value: 0.18302619990671526
|
2048 |
+
- type: manhattan_spearman
|
2049 |
+
value: 0.194691037846159
|
2050 |
+
- task:
|
2051 |
+
type: STS
|
2052 |
+
dataset:
|
2053 |
+
type: mteb/sts22-crosslingual-sts
|
2054 |
+
name: MTEB STS22 (es-it)
|
2055 |
+
metrics:
|
2056 |
+
- type: cos_sim_pearson
|
2057 |
+
value: 0.36589199830751484
|
2058 |
+
- type: cos_sim_spearman
|
2059 |
+
value: 0.3598972209997404
|
2060 |
+
- type: euclidean_pearson
|
2061 |
+
value: 0.4104511254757421
|
2062 |
+
- type: euclidean_spearman
|
2063 |
+
value: 0.39322301680629834
|
2064 |
+
- type: manhattan_pearson
|
2065 |
+
value: 0.4136802503205308
|
2066 |
+
- type: manhattan_spearman
|
2067 |
+
value: 0.4076270030293609
|
2068 |
+
- task:
|
2069 |
+
type: STS
|
2070 |
+
dataset:
|
2071 |
+
type: mteb/sts22-crosslingual-sts
|
2072 |
+
name: MTEB STS22 (de-fr)
|
2073 |
+
metrics:
|
2074 |
+
- type: cos_sim_pearson
|
2075 |
+
value: 0.26350936227950084
|
2076 |
+
- type: cos_sim_spearman
|
2077 |
+
value: 0.25108218032460344
|
2078 |
+
- type: euclidean_pearson
|
2079 |
+
value: 0.2861681094744849
|
2080 |
+
- type: euclidean_spearman
|
2081 |
+
value: 0.2735099020394359
|
2082 |
+
- type: manhattan_pearson
|
2083 |
+
value: 0.30527977072984513
|
2084 |
+
- type: manhattan_spearman
|
2085 |
+
value: 0.2640333999064081
|
2086 |
+
- task:
|
2087 |
+
type: STS
|
2088 |
+
dataset:
|
2089 |
+
type: mteb/sts22-crosslingual-sts
|
2090 |
+
name: MTEB STS22 (de-pl)
|
2091 |
+
metrics:
|
2092 |
+
- type: cos_sim_pearson
|
2093 |
+
value: 0.20056269198600324
|
2094 |
+
- type: cos_sim_spearman
|
2095 |
+
value: 0.20939990379746756
|
2096 |
+
- type: euclidean_pearson
|
2097 |
+
value: 0.18942765438962197
|
2098 |
+
- type: euclidean_spearman
|
2099 |
+
value: 0.21709842967237447
|
2100 |
+
- type: manhattan_pearson
|
2101 |
+
value: 0.23643909798655122
|
2102 |
+
- type: manhattan_spearman
|
2103 |
+
value: 0.2358828328071473
|
2104 |
+
- task:
|
2105 |
+
type: STS
|
2106 |
+
dataset:
|
2107 |
+
type: mteb/sts22-crosslingual-sts
|
2108 |
+
name: MTEB STS22 (fr-pl)
|
2109 |
+
metrics:
|
2110 |
+
- type: cos_sim_pearson
|
2111 |
+
value: 0.19563740271419394
|
2112 |
+
- type: cos_sim_spearman
|
2113 |
+
value: 0.05634361698190111
|
2114 |
+
- type: euclidean_pearson
|
2115 |
+
value: 0.16833522619239474
|
2116 |
+
- type: euclidean_spearman
|
2117 |
+
value: 0.16903085094570333
|
2118 |
+
- type: manhattan_pearson
|
2119 |
+
value: 0.058053927126608146
|
2120 |
+
- type: manhattan_spearman
|
2121 |
+
value: 0.16903085094570333
|
2122 |
+
- task:
|
2123 |
+
type: Classification
|
2124 |
+
dataset:
|
2125 |
+
type: mteb/amazon_massive_scenario
|
2126 |
+
name: MTEB MassiveScenarioClassification (af)
|
2127 |
+
metrics:
|
2128 |
+
- type: accuracy
|
2129 |
+
value: 0.40245460659045057
|
2130 |
+
- type: f1
|
2131 |
+
value: 0.3879924050989544
|
2132 |
+
- task:
|
2133 |
+
type: Classification
|
2134 |
+
dataset:
|
2135 |
+
type: mteb/amazon_massive_scenario
|
2136 |
+
name: MTEB MassiveScenarioClassification (am)
|
2137 |
+
metrics:
|
2138 |
+
- type: accuracy
|
2139 |
+
value: 0.2568930733019502
|
2140 |
+
- type: f1
|
2141 |
+
value: 0.2548816627916271
|
2142 |
+
- task:
|
2143 |
+
type: Classification
|
2144 |
+
dataset:
|
2145 |
+
type: mteb/amazon_massive_scenario
|
2146 |
+
name: MTEB MassiveScenarioClassification (ar)
|
2147 |
+
metrics:
|
2148 |
+
- type: accuracy
|
2149 |
+
value: 0.3239744451916611
|
2150 |
+
- type: f1
|
2151 |
+
value: 0.31863029579075774
|
2152 |
+
- task:
|
2153 |
+
type: Classification
|
2154 |
+
dataset:
|
2155 |
+
type: mteb/amazon_massive_scenario
|
2156 |
+
name: MTEB MassiveScenarioClassification (az)
|
2157 |
+
metrics:
|
2158 |
+
- type: accuracy
|
2159 |
+
value: 0.4053127101546738
|
2160 |
+
- type: f1
|
2161 |
+
value: 0.39707079033948933
|
2162 |
+
- task:
|
2163 |
+
type: Classification
|
2164 |
+
dataset:
|
2165 |
+
type: mteb/amazon_massive_scenario
|
2166 |
+
name: MTEB MassiveScenarioClassification (bn)
|
2167 |
+
metrics:
|
2168 |
+
- type: accuracy
|
2169 |
+
value: 0.2723268325487559
|
2170 |
+
- type: f1
|
2171 |
+
value: 0.2644365328185879
|
2172 |
+
- task:
|
2173 |
+
type: Classification
|
2174 |
+
dataset:
|
2175 |
+
type: mteb/amazon_massive_scenario
|
2176 |
+
name: MTEB MassiveScenarioClassification (cy)
|
2177 |
+
metrics:
|
2178 |
+
- type: accuracy
|
2179 |
+
value: 0.3869872225958305
|
2180 |
+
- type: f1
|
2181 |
+
value: 0.3655930387892567
|
2182 |
+
- task:
|
2183 |
+
type: Classification
|
2184 |
+
dataset:
|
2185 |
+
type: mteb/amazon_massive_scenario
|
2186 |
+
name: MTEB MassiveScenarioClassification (da)
|
2187 |
+
metrics:
|
2188 |
+
- type: accuracy
|
2189 |
+
value: 0.4475453934095494
|
2190 |
+
- type: f1
|
2191 |
+
value: 0.4287356484024154
|
2192 |
+
- task:
|
2193 |
+
type: Classification
|
2194 |
+
dataset:
|
2195 |
+
type: mteb/amazon_massive_scenario
|
2196 |
+
name: MTEB MassiveScenarioClassification (de)
|
2197 |
+
metrics:
|
2198 |
+
- type: accuracy
|
2199 |
+
value: 0.41355077336919976
|
2200 |
+
- type: f1
|
2201 |
+
value: 0.3982365179458047
|
2202 |
+
- task:
|
2203 |
+
type: Classification
|
2204 |
+
dataset:
|
2205 |
+
type: mteb/amazon_massive_scenario
|
2206 |
+
name: MTEB MassiveScenarioClassification (el)
|
2207 |
+
metrics:
|
2208 |
+
- type: accuracy
|
2209 |
+
value: 0.3843981170141224
|
2210 |
+
- type: f1
|
2211 |
+
value: 0.3702538368296387
|
2212 |
+
- task:
|
2213 |
+
type: Classification
|
2214 |
+
dataset:
|
2215 |
+
type: mteb/amazon_massive_scenario
|
2216 |
+
name: MTEB MassiveScenarioClassification (en)
|
2217 |
+
metrics:
|
2218 |
+
- type: accuracy
|
2219 |
+
value: 0.6633826496301277
|
2220 |
+
- type: f1
|
2221 |
+
value: 0.6589634765029931
|
2222 |
+
- task:
|
2223 |
+
type: Classification
|
2224 |
+
dataset:
|
2225 |
+
type: mteb/amazon_massive_scenario
|
2226 |
+
name: MTEB MassiveScenarioClassification (es)
|
2227 |
+
metrics:
|
2228 |
+
- type: accuracy
|
2229 |
+
value: 0.4417955615332885
|
2230 |
+
- type: f1
|
2231 |
+
value: 0.4310228811620319
|
2232 |
+
- task:
|
2233 |
+
type: Classification
|
2234 |
+
dataset:
|
2235 |
+
type: mteb/amazon_massive_scenario
|
2236 |
+
name: MTEB MassiveScenarioClassification (fa)
|
2237 |
+
metrics:
|
2238 |
+
- type: accuracy
|
2239 |
+
value: 0.3482851378614661
|
2240 |
+
- type: f1
|
2241 |
+
value: 0.33959524415028025
|
2242 |
+
- task:
|
2243 |
+
type: Classification
|
2244 |
+
dataset:
|
2245 |
+
type: mteb/amazon_massive_scenario
|
2246 |
+
name: MTEB MassiveScenarioClassification (fi)
|
2247 |
+
metrics:
|
2248 |
+
- type: accuracy
|
2249 |
+
value: 0.40561533288500334
|
2250 |
+
- type: f1
|
2251 |
+
value: 0.38049390117336274
|
2252 |
+
- task:
|
2253 |
+
type: Classification
|
2254 |
+
dataset:
|
2255 |
+
type: mteb/amazon_massive_scenario
|
2256 |
+
name: MTEB MassiveScenarioClassification (fr)
|
2257 |
+
metrics:
|
2258 |
+
- type: accuracy
|
2259 |
+
value: 0.45917955615332884
|
2260 |
+
- type: f1
|
2261 |
+
value: 0.4465741971572902
|
2262 |
+
- task:
|
2263 |
+
type: Classification
|
2264 |
+
dataset:
|
2265 |
+
type: mteb/amazon_massive_scenario
|
2266 |
+
name: MTEB MassiveScenarioClassification (he)
|
2267 |
+
metrics:
|
2268 |
+
- type: accuracy
|
2269 |
+
value: 0.3208473436449227
|
2270 |
+
- type: f1
|
2271 |
+
value: 0.2953932929808133
|
2272 |
+
- task:
|
2273 |
+
type: Classification
|
2274 |
+
dataset:
|
2275 |
+
type: mteb/amazon_massive_scenario
|
2276 |
+
name: MTEB MassiveScenarioClassification (hi)
|
2277 |
+
metrics:
|
2278 |
+
- type: accuracy
|
2279 |
+
value: 0.28369199731002015
|
2280 |
+
- type: f1
|
2281 |
+
value: 0.2752902837981212
|
2282 |
+
- task:
|
2283 |
+
type: Classification
|
2284 |
+
dataset:
|
2285 |
+
type: mteb/amazon_massive_scenario
|
2286 |
+
name: MTEB MassiveScenarioClassification (hu)
|
2287 |
+
metrics:
|
2288 |
+
- type: accuracy
|
2289 |
+
value: 0.3949226630800269
|
2290 |
+
- type: f1
|
2291 |
+
value: 0.37327234047050406
|
2292 |
+
- task:
|
2293 |
+
type: Classification
|
2294 |
+
dataset:
|
2295 |
+
type: mteb/amazon_massive_scenario
|
2296 |
+
name: MTEB MassiveScenarioClassification (hy)
|
2297 |
+
metrics:
|
2298 |
+
- type: accuracy
|
2299 |
+
value: 0.2590450571620713
|
2300 |
+
- type: f1
|
2301 |
+
value: 0.24547396574853445
|
2302 |
+
- task:
|
2303 |
+
type: Classification
|
2304 |
+
dataset:
|
2305 |
+
type: mteb/amazon_massive_scenario
|
2306 |
+
name: MTEB MassiveScenarioClassification (id)
|
2307 |
+
metrics:
|
2308 |
+
- type: accuracy
|
2309 |
+
value: 0.4095830531271016
|
2310 |
+
- type: f1
|
2311 |
+
value: 0.40177843177422223
|
2312 |
+
- task:
|
2313 |
+
type: Classification
|
2314 |
+
dataset:
|
2315 |
+
type: mteb/amazon_massive_scenario
|
2316 |
+
name: MTEB MassiveScenarioClassification (is)
|
2317 |
+
metrics:
|
2318 |
+
- type: accuracy
|
2319 |
+
value: 0.38564223268325487
|
2320 |
+
- type: f1
|
2321 |
+
value: 0.3735307758495248
|
2322 |
+
- task:
|
2323 |
+
type: Classification
|
2324 |
+
dataset:
|
2325 |
+
type: mteb/amazon_massive_scenario
|
2326 |
+
name: MTEB MassiveScenarioClassification (it)
|
2327 |
+
metrics:
|
2328 |
+
- type: accuracy
|
2329 |
+
value: 0.4658708809683928
|
2330 |
+
- type: f1
|
2331 |
+
value: 0.44103900526804984
|
2332 |
+
- task:
|
2333 |
+
type: Classification
|
2334 |
+
dataset:
|
2335 |
+
type: mteb/amazon_massive_scenario
|
2336 |
+
name: MTEB MassiveScenarioClassification (ja)
|
2337 |
+
metrics:
|
2338 |
+
- type: accuracy
|
2339 |
+
value: 0.4624747814391393
|
2340 |
+
- type: f1
|
2341 |
+
value: 0.454107101796664
|
2342 |
+
- task:
|
2343 |
+
type: Classification
|
2344 |
+
dataset:
|
2345 |
+
type: mteb/amazon_massive_scenario
|
2346 |
+
name: MTEB MassiveScenarioClassification (jv)
|
2347 |
+
metrics:
|
2348 |
+
- type: accuracy
|
2349 |
+
value: 0.396570275722932
|
2350 |
+
- type: f1
|
2351 |
+
value: 0.3882737576832412
|
2352 |
+
- task:
|
2353 |
+
type: Classification
|
2354 |
+
dataset:
|
2355 |
+
type: mteb/amazon_massive_scenario
|
2356 |
+
name: MTEB MassiveScenarioClassification (ka)
|
2357 |
+
metrics:
|
2358 |
+
- type: accuracy
|
2359 |
+
value: 0.2527908540685945
|
2360 |
+
- type: f1
|
2361 |
+
value: 0.23662661686788491
|
2362 |
+
- task:
|
2363 |
+
type: Classification
|
2364 |
+
dataset:
|
2365 |
+
type: mteb/amazon_massive_scenario
|
2366 |
+
name: MTEB MassiveScenarioClassification (km)
|
2367 |
+
metrics:
|
2368 |
+
- type: accuracy
|
2369 |
+
value: 0.2897108271687962
|
2370 |
+
- type: f1
|
2371 |
+
value: 0.27195758324189245
|
2372 |
+
- task:
|
2373 |
+
type: Classification
|
2374 |
+
dataset:
|
2375 |
+
type: mteb/amazon_massive_scenario
|
2376 |
+
name: MTEB MassiveScenarioClassification (kn)
|
2377 |
+
metrics:
|
2378 |
+
- type: accuracy
|
2379 |
+
value: 0.1927370544720915
|
2380 |
+
- type: f1
|
2381 |
+
value: 0.18694271924323635
|
2382 |
+
- task:
|
2383 |
+
type: Classification
|
2384 |
+
dataset:
|
2385 |
+
type: mteb/amazon_massive_scenario
|
2386 |
+
name: MTEB MassiveScenarioClassification (ko)
|
2387 |
+
metrics:
|
2388 |
+
- type: accuracy
|
2389 |
+
value: 0.3572965702757229
|
2390 |
+
- type: f1
|
2391 |
+
value: 0.3438287006177308
|
2392 |
+
- task:
|
2393 |
+
type: Classification
|
2394 |
+
dataset:
|
2395 |
+
type: mteb/amazon_massive_scenario
|
2396 |
+
name: MTEB MassiveScenarioClassification (lv)
|
2397 |
+
metrics:
|
2398 |
+
- type: accuracy
|
2399 |
+
value: 0.3957296570275723
|
2400 |
+
- type: f1
|
2401 |
+
value: 0.38074945140886923
|
2402 |
+
- task:
|
2403 |
+
type: Classification
|
2404 |
+
dataset:
|
2405 |
+
type: mteb/amazon_massive_scenario
|
2406 |
+
name: MTEB MassiveScenarioClassification (ml)
|
2407 |
+
metrics:
|
2408 |
+
- type: accuracy
|
2409 |
+
value: 0.19895763281775386
|
2410 |
+
- type: f1
|
2411 |
+
value: 0.20009313648468288
|
2412 |
+
- task:
|
2413 |
+
type: Classification
|
2414 |
+
dataset:
|
2415 |
+
type: mteb/amazon_massive_scenario
|
2416 |
+
name: MTEB MassiveScenarioClassification (mn)
|
2417 |
+
metrics:
|
2418 |
+
- type: accuracy
|
2419 |
+
value: 0.32431069266980495
|
2420 |
+
- type: f1
|
2421 |
+
value: 0.31395958664782575
|
2422 |
+
- task:
|
2423 |
+
type: Classification
|
2424 |
+
dataset:
|
2425 |
+
type: mteb/amazon_massive_scenario
|
2426 |
+
name: MTEB MassiveScenarioClassification (ms)
|
2427 |
+
metrics:
|
2428 |
+
- type: accuracy
|
2429 |
+
value: 0.42323470073974445
|
2430 |
+
- type: f1
|
2431 |
+
value: 0.4081374026314701
|
2432 |
+
- task:
|
2433 |
+
type: Classification
|
2434 |
+
dataset:
|
2435 |
+
type: mteb/amazon_massive_scenario
|
2436 |
+
name: MTEB MassiveScenarioClassification (my)
|
2437 |
+
metrics:
|
2438 |
+
- type: accuracy
|
2439 |
+
value: 0.20864156018829857
|
2440 |
+
- type: f1
|
2441 |
+
value: 0.20409870408935435
|
2442 |
+
- task:
|
2443 |
+
type: Classification
|
2444 |
+
dataset:
|
2445 |
+
type: mteb/amazon_massive_scenario
|
2446 |
+
name: MTEB MassiveScenarioClassification (nb)
|
2447 |
+
metrics:
|
2448 |
+
- type: accuracy
|
2449 |
+
value: 0.4047074646940148
|
2450 |
+
- type: f1
|
2451 |
+
value: 0.3919044149415904
|
2452 |
+
- task:
|
2453 |
+
type: Classification
|
2454 |
+
dataset:
|
2455 |
+
type: mteb/amazon_massive_scenario
|
2456 |
+
name: MTEB MassiveScenarioClassification (nl)
|
2457 |
+
metrics:
|
2458 |
+
- type: accuracy
|
2459 |
+
value: 0.43591123066577
|
2460 |
+
- type: f1
|
2461 |
+
value: 0.4143420363064241
|
2462 |
+
- task:
|
2463 |
+
type: Classification
|
2464 |
+
dataset:
|
2465 |
+
type: mteb/amazon_massive_scenario
|
2466 |
+
name: MTEB MassiveScenarioClassification (pl)
|
2467 |
+
metrics:
|
2468 |
+
- type: accuracy
|
2469 |
+
value: 0.41876260928043046
|
2470 |
+
- type: f1
|
2471 |
+
value: 0.4119211767666761
|
2472 |
+
- task:
|
2473 |
+
type: Classification
|
2474 |
+
dataset:
|
2475 |
+
type: mteb/amazon_massive_scenario
|
2476 |
+
name: MTEB MassiveScenarioClassification (pt)
|
2477 |
+
metrics:
|
2478 |
+
- type: accuracy
|
2479 |
+
value: 0.46308002689979827
|
2480 |
+
- type: f1
|
2481 |
+
value: 0.4525536730126799
|
2482 |
+
- task:
|
2483 |
+
type: Classification
|
2484 |
+
dataset:
|
2485 |
+
type: mteb/amazon_massive_scenario
|
2486 |
+
name: MTEB MassiveScenarioClassification (ro)
|
2487 |
+
metrics:
|
2488 |
+
- type: accuracy
|
2489 |
+
value: 0.4252521856086079
|
2490 |
+
- type: f1
|
2491 |
+
value: 0.4102418109296485
|
2492 |
+
- task:
|
2493 |
+
type: Classification
|
2494 |
+
dataset:
|
2495 |
+
type: mteb/amazon_massive_scenario
|
2496 |
+
name: MTEB MassiveScenarioClassification (ru)
|
2497 |
+
metrics:
|
2498 |
+
- type: accuracy
|
2499 |
+
value: 0.3594821788836584
|
2500 |
+
- type: f1
|
2501 |
+
value: 0.3508598314806566
|
2502 |
+
- task:
|
2503 |
+
type: Classification
|
2504 |
+
dataset:
|
2505 |
+
type: mteb/amazon_massive_scenario
|
2506 |
+
name: MTEB MassiveScenarioClassification (sl)
|
2507 |
+
metrics:
|
2508 |
+
- type: accuracy
|
2509 |
+
value: 0.3869199731002017
|
2510 |
+
- type: f1
|
2511 |
+
value: 0.3768119408674127
|
2512 |
+
- task:
|
2513 |
+
type: Classification
|
2514 |
+
dataset:
|
2515 |
+
type: mteb/amazon_massive_scenario
|
2516 |
+
name: MTEB MassiveScenarioClassification (sq)
|
2517 |
+
metrics:
|
2518 |
+
- type: accuracy
|
2519 |
+
value: 0.4047410894418292
|
2520 |
+
- type: f1
|
2521 |
+
value: 0.39480530387013596
|
2522 |
+
- task:
|
2523 |
+
type: Classification
|
2524 |
+
dataset:
|
2525 |
+
type: mteb/amazon_massive_scenario
|
2526 |
+
name: MTEB MassiveScenarioClassification (sv)
|
2527 |
+
metrics:
|
2528 |
+
- type: accuracy
|
2529 |
+
value: 0.41523201075991933
|
2530 |
+
- type: f1
|
2531 |
+
value: 0.40200979960243827
|
2532 |
+
- task:
|
2533 |
+
type: Classification
|
2534 |
+
dataset:
|
2535 |
+
type: mteb/amazon_massive_scenario
|
2536 |
+
name: MTEB MassiveScenarioClassification (sw)
|
2537 |
+
metrics:
|
2538 |
+
- type: accuracy
|
2539 |
+
value: 0.39549428379287155
|
2540 |
+
- type: f1
|
2541 |
+
value: 0.3818556124333806
|
2542 |
+
- task:
|
2543 |
+
type: Classification
|
2544 |
+
dataset:
|
2545 |
+
type: mteb/amazon_massive_scenario
|
2546 |
+
name: MTEB MassiveScenarioClassification (ta)
|
2547 |
+
metrics:
|
2548 |
+
- type: accuracy
|
2549 |
+
value: 0.228782784129119
|
2550 |
+
- type: f1
|
2551 |
+
value: 0.22239467186721457
|
2552 |
+
- task:
|
2553 |
+
type: Classification
|
2554 |
+
dataset:
|
2555 |
+
type: mteb/amazon_massive_scenario
|
2556 |
+
name: MTEB MassiveScenarioClassification (te)
|
2557 |
+
metrics:
|
2558 |
+
- type: accuracy
|
2559 |
+
value: 0.2051445864156019
|
2560 |
+
- type: f1
|
2561 |
+
value: 0.1999904788553022
|
2562 |
+
- task:
|
2563 |
+
type: Classification
|
2564 |
+
dataset:
|
2565 |
+
type: mteb/amazon_massive_scenario
|
2566 |
+
name: MTEB MassiveScenarioClassification (th)
|
2567 |
+
metrics:
|
2568 |
+
- type: accuracy
|
2569 |
+
value: 0.34926025554808343
|
2570 |
+
- type: f1
|
2571 |
+
value: 0.33240167172157226
|
2572 |
+
- task:
|
2573 |
+
type: Classification
|
2574 |
+
dataset:
|
2575 |
+
type: mteb/amazon_massive_scenario
|
2576 |
+
name: MTEB MassiveScenarioClassification (tl)
|
2577 |
+
metrics:
|
2578 |
+
- type: accuracy
|
2579 |
+
value: 0.4074983187626093
|
2580 |
+
- type: f1
|
2581 |
+
value: 0.3930274328728882
|
2582 |
+
- task:
|
2583 |
+
type: Classification
|
2584 |
+
dataset:
|
2585 |
+
type: mteb/amazon_massive_scenario
|
2586 |
+
name: MTEB MassiveScenarioClassification (tr)
|
2587 |
+
metrics:
|
2588 |
+
- type: accuracy
|
2589 |
+
value: 0.3906859448554136
|
2590 |
+
- type: f1
|
2591 |
+
value: 0.39215420396629713
|
2592 |
+
- task:
|
2593 |
+
type: Classification
|
2594 |
+
dataset:
|
2595 |
+
type: mteb/amazon_massive_scenario
|
2596 |
+
name: MTEB MassiveScenarioClassification (ur)
|
2597 |
+
metrics:
|
2598 |
+
- type: accuracy
|
2599 |
+
value: 0.29747814391392063
|
2600 |
+
- type: f1
|
2601 |
+
value: 0.2826183689222045
|
2602 |
+
- task:
|
2603 |
+
type: Classification
|
2604 |
+
dataset:
|
2605 |
+
type: mteb/amazon_massive_scenario
|
2606 |
+
name: MTEB MassiveScenarioClassification (vi)
|
2607 |
+
metrics:
|
2608 |
+
- type: accuracy
|
2609 |
+
value: 0.3802286482851379
|
2610 |
+
- type: f1
|
2611 |
+
value: 0.37874243860869694
|
2612 |
+
- task:
|
2613 |
+
type: Classification
|
2614 |
+
dataset:
|
2615 |
+
type: mteb/amazon_massive_scenario
|
2616 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
2617 |
+
metrics:
|
2618 |
+
- type: accuracy
|
2619 |
+
value: 0.48550773369199723
|
2620 |
+
- type: f1
|
2621 |
+
value: 0.46739962588264905
|
2622 |
+
- task:
|
2623 |
+
type: Classification
|
2624 |
+
dataset:
|
2625 |
+
type: mteb/amazon_massive_scenario
|
2626 |
+
name: MTEB MassiveScenarioClassification (zh-TW)
|
2627 |
+
metrics:
|
2628 |
+
- type: accuracy
|
2629 |
+
value: 0.45178211163416276
|
2630 |
+
- type: f1
|
2631 |
+
value: 0.4484809741811729
|
2632 |
+
- task:
|
2633 |
+
type: Retrieval
|
2634 |
+
dataset:
|
2635 |
+
type: quora
|
2636 |
+
name: MTEB QuoraRetrieval
|
2637 |
+
metrics:
|
2638 |
+
- type: map_at_1
|
2639 |
+
value: 0.61697
|
2640 |
+
- type: map_at_10
|
2641 |
+
value: 0.74204
|
2642 |
+
- type: map_at_100
|
2643 |
+
value: 0.75023
|
2644 |
+
- type: map_at_1000
|
2645 |
+
value: 0.75059
|
2646 |
+
- type: map_at_3
|
2647 |
+
value: 0.71265
|
2648 |
+
- type: map_at_5
|
2649 |
+
value: 0.73001
|
2650 |
+
- type: ndcg_at_1
|
2651 |
+
value: 0.7095
|
2652 |
+
- type: ndcg_at_10
|
2653 |
+
value: 0.7896
|
2654 |
+
- type: ndcg_at_100
|
2655 |
+
value: 0.8126
|
2656 |
+
- type: ndcg_at_1000
|
2657 |
+
value: 0.81679
|
2658 |
+
- type: ndcg_at_3
|
2659 |
+
value: 0.75246
|
2660 |
+
- type: ndcg_at_5
|
2661 |
+
value: 0.77092
|
2662 |
+
- type: precision_at_1
|
2663 |
+
value: 0.7095
|
2664 |
+
- type: precision_at_10
|
2665 |
+
value: 0.11998
|
2666 |
+
- type: precision_at_100
|
2667 |
+
value: 0.01451
|
2668 |
+
- type: precision_at_1000
|
2669 |
+
value: 0.00154
|
2670 |
+
- type: precision_at_3
|
2671 |
+
value: 0.3263
|
2672 |
+
- type: precision_at_5
|
2673 |
+
value: 0.21574
|
2674 |
+
- type: recall_at_1
|
2675 |
+
value: 0.61697
|
2676 |
+
- type: recall_at_10
|
2677 |
+
value: 0.88233
|
2678 |
+
- type: recall_at_100
|
2679 |
+
value: 0.96961
|
2680 |
+
- type: recall_at_1000
|
2681 |
+
value: 0.99401
|
2682 |
+
- type: recall_at_3
|
2683 |
+
value: 0.77689
|
2684 |
+
- type: recall_at_5
|
2685 |
+
value: 0.82745
|
2686 |
+
- task:
|
2687 |
+
type: STS
|
2688 |
+
dataset:
|
2689 |
+
type: mteb/sickr-sts
|
2690 |
+
name: MTEB SICK-R
|
2691 |
+
metrics:
|
2692 |
+
- type: cos_sim_pearson
|
2693 |
+
value: 0.8096286245858941
|
2694 |
+
- type: cos_sim_spearman
|
2695 |
+
value: 0.7457093488947429
|
2696 |
+
- type: euclidean_pearson
|
2697 |
+
value: 0.7550377970259401
|
2698 |
+
- type: euclidean_spearman
|
2699 |
+
value: 0.7174980046229991
|
2700 |
+
- type: manhattan_pearson
|
2701 |
+
value: 0.7532568360913819
|
2702 |
+
- type: manhattan_spearman
|
2703 |
+
value: 0.7180676733410375
|
2704 |
+
- task:
|
2705 |
+
type: PairClassification
|
2706 |
+
dataset:
|
2707 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2708 |
+
name: MTEB TwitterURLCorpus
|
2709 |
+
metrics:
|
2710 |
+
- type: cos_sim_accuracy
|
2711 |
+
value: 0.8663018589668956
|
2712 |
+
- type: cos_sim_accuracy_threshold
|
2713 |
+
value: 0.6738145351409912
|
2714 |
+
- type: cos_sim_ap
|
2715 |
+
value: 0.805106377126291
|
2716 |
+
- type: cos_sim_f1
|
2717 |
+
value: 0.7270810586950793
|
2718 |
+
- type: cos_sim_f1_threshold
|
2719 |
+
value: 0.6406128406524658
|
2720 |
+
- type: cos_sim_precision
|
2721 |
+
value: 0.7114123627790466
|
2722 |
+
- type: cos_sim_recall
|
2723 |
+
value: 0.743455497382199
|
2724 |
+
- type: dot_accuracy
|
2725 |
+
value: 0.8241743315092949
|
2726 |
+
- type: dot_accuracy_threshold
|
2727 |
+
value: 967.1823120117188
|
2728 |
+
- type: dot_ap
|
2729 |
+
value: 0.692393381283664
|
2730 |
+
- type: dot_f1
|
2731 |
+
value: 0.6561346624814597
|
2732 |
+
- type: dot_f1_threshold
|
2733 |
+
value: 831.1060791015625
|
2734 |
+
- type: dot_precision
|
2735 |
+
value: 0.5943260638630257
|
2736 |
+
- type: dot_recall
|
2737 |
+
value: 0.7322913458577148
|
2738 |
+
- type: euclidean_accuracy
|
2739 |
+
value: 0.8649435324251951
|
2740 |
+
- type: euclidean_accuracy_threshold
|
2741 |
+
value: 30.077878952026367
|
2742 |
+
- type: euclidean_ap
|
2743 |
+
value: 0.8028100477250927
|
2744 |
+
- type: euclidean_f1
|
2745 |
+
value: 0.7258242344489099
|
2746 |
+
- type: euclidean_f1_threshold
|
2747 |
+
value: 32.570228576660156
|
2748 |
+
- type: euclidean_precision
|
2749 |
+
value: 0.6744662568576906
|
2750 |
+
- type: euclidean_recall
|
2751 |
+
value: 0.7856482907299045
|
2752 |
+
- type: manhattan_accuracy
|
2753 |
+
value: 0.8659525749990298
|
2754 |
+
- type: manhattan_accuracy_threshold
|
2755 |
+
value: 625.0921020507812
|
2756 |
+
- type: manhattan_ap
|
2757 |
+
value: 0.8037850832566262
|
2758 |
+
- type: manhattan_f1
|
2759 |
+
value: 0.7259435321233073
|
2760 |
+
- type: manhattan_f1_threshold
|
2761 |
+
value: 679.8679809570312
|
2762 |
+
- type: manhattan_precision
|
2763 |
+
value: 0.6819350473612991
|
2764 |
+
- type: manhattan_recall
|
2765 |
+
value: 0.7760240221743148
|
2766 |
+
- type: max_accuracy
|
2767 |
+
value: 0.8663018589668956
|
2768 |
+
- type: max_ap
|
2769 |
+
value: 0.805106377126291
|
2770 |
+
- type: max_f1
|
2771 |
+
value: 0.7270810586950793
|
2772 |
+
- task:
|
2773 |
+
type: Clustering
|
2774 |
+
dataset:
|
2775 |
+
type: mteb/biorxiv-clustering-s2s
|
2776 |
+
name: MTEB BiorxivClusteringS2S
|
2777 |
+
metrics:
|
2778 |
+
- type: v_measure
|
2779 |
+
value: 0.23080939123955474
|
2780 |
+
- task:
|
2781 |
+
type: STS
|
2782 |
+
dataset:
|
2783 |
+
type: mteb/sts17-crosslingual-sts
|
2784 |
+
name: MTEB STS17 (ko-ko)
|
2785 |
+
metrics:
|
2786 |
+
- type: cos_sim_pearson
|
2787 |
+
value: 0.430464619152799
|
2788 |
+
- type: cos_sim_spearman
|
2789 |
+
value: 0.4565606588928089
|
2790 |
+
- type: euclidean_pearson
|
2791 |
+
value: 0.45694377883554993
|
2792 |
+
- type: euclidean_spearman
|
2793 |
+
value: 0.4508552742346606
|
2794 |
+
- type: manhattan_pearson
|
2795 |
+
value: 0.45871666989036813
|
2796 |
+
- type: manhattan_spearman
|
2797 |
+
value: 0.45155963016434164
|
2798 |
+
- task:
|
2799 |
+
type: STS
|
2800 |
+
dataset:
|
2801 |
+
type: mteb/sts17-crosslingual-sts
|
2802 |
+
name: MTEB STS17 (ar-ar)
|
2803 |
+
metrics:
|
2804 |
+
- type: cos_sim_pearson
|
2805 |
+
value: 0.5327469278912148
|
2806 |
+
- type: cos_sim_spearman
|
2807 |
+
value: 0.541611320762379
|
2808 |
+
- type: euclidean_pearson
|
2809 |
+
value: 0.5597026429327157
|
2810 |
+
- type: euclidean_spearman
|
2811 |
+
value: 0.5471320909074608
|
2812 |
+
- type: manhattan_pearson
|
2813 |
+
value: 0.5612511774278802
|
2814 |
+
- type: manhattan_spearman
|
2815 |
+
value: 0.5522875659158676
|
2816 |
+
- task:
|
2817 |
+
type: STS
|
2818 |
+
dataset:
|
2819 |
+
type: mteb/sts17-crosslingual-sts
|
2820 |
+
name: MTEB STS17 (en-ar)
|
2821 |
+
metrics:
|
2822 |
+
- type: cos_sim_pearson
|
2823 |
+
value: 0.015482997790039945
|
2824 |
+
- type: cos_sim_spearman
|
2825 |
+
value: 0.01720838634736358
|
2826 |
+
- type: euclidean_pearson
|
2827 |
+
value: -0.06727915670345885
|
2828 |
+
- type: euclidean_spearman
|
2829 |
+
value: -0.06112826908474543
|
2830 |
+
- type: manhattan_pearson
|
2831 |
+
value: -0.0494386093060865
|
2832 |
+
- type: manhattan_spearman
|
2833 |
+
value: -0.05018174110623732
|
2834 |
+
- task:
|
2835 |
+
type: STS
|
2836 |
+
dataset:
|
2837 |
+
type: mteb/sts17-crosslingual-sts
|
2838 |
+
name: MTEB STS17 (en-de)
|
2839 |
+
metrics:
|
2840 |
+
- type: cos_sim_pearson
|
2841 |
+
value: 0.275420218362265
|
2842 |
+
- type: cos_sim_spearman
|
2843 |
+
value: 0.2548383843103101
|
2844 |
+
- type: euclidean_pearson
|
2845 |
+
value: 0.06268684143856358
|
2846 |
+
- type: euclidean_spearman
|
2847 |
+
value: 0.058779614210916785
|
2848 |
+
- type: manhattan_pearson
|
2849 |
+
value: 0.026672377392278606
|
2850 |
+
- type: manhattan_spearman
|
2851 |
+
value: 0.025683839956554773
|
2852 |
+
- task:
|
2853 |
+
type: STS
|
2854 |
+
dataset:
|
2855 |
+
type: mteb/sts17-crosslingual-sts
|
2856 |
+
name: MTEB STS17 (en-en)
|
2857 |
+
metrics:
|
2858 |
+
- type: cos_sim_pearson
|
2859 |
+
value: 0.8532029757646663
|
2860 |
+
- type: cos_sim_spearman
|
2861 |
+
value: 0.8732720847297224
|
2862 |
+
- type: euclidean_pearson
|
2863 |
+
value: 0.8112594485791255
|
2864 |
+
- type: euclidean_spearman
|
2865 |
+
value: 0.811531079489332
|
2866 |
+
- type: manhattan_pearson
|
2867 |
+
value: 0.8132899414704019
|
2868 |
+
- type: manhattan_spearman
|
2869 |
+
value: 0.813897040261192
|
2870 |
+
- task:
|
2871 |
+
type: STS
|
2872 |
+
dataset:
|
2873 |
+
type: mteb/sts17-crosslingual-sts
|
2874 |
+
name: MTEB STS17 (en-tr)
|
2875 |
+
metrics:
|
2876 |
+
- type: cos_sim_pearson
|
2877 |
+
value: 0.0437162299241808
|
2878 |
+
- type: cos_sim_spearman
|
2879 |
+
value: 0.020879072561774542
|
2880 |
+
- type: euclidean_pearson
|
2881 |
+
value: -0.030725243785454597
|
2882 |
+
- type: euclidean_spearman
|
2883 |
+
value: -0.05372133927948353
|
2884 |
+
- type: manhattan_pearson
|
2885 |
+
value: -0.04867795293367359
|
2886 |
+
- type: manhattan_spearman
|
2887 |
+
value: -0.07939706984001878
|
2888 |
+
- task:
|
2889 |
+
type: STS
|
2890 |
+
dataset:
|
2891 |
+
type: mteb/sts17-crosslingual-sts
|
2892 |
+
name: MTEB STS17 (es-en)
|
2893 |
+
metrics:
|
2894 |
+
- type: cos_sim_pearson
|
2895 |
+
value: 0.20306030448858603
|
2896 |
+
- type: cos_sim_spearman
|
2897 |
+
value: 0.2193220782551375
|
2898 |
+
- type: euclidean_pearson
|
2899 |
+
value: 0.03878631934602361
|
2900 |
+
- type: euclidean_spearman
|
2901 |
+
value: 0.05171796902725965
|
2902 |
+
- type: manhattan_pearson
|
2903 |
+
value: 0.0713020644036815
|
2904 |
+
- type: manhattan_spearman
|
2905 |
+
value: 0.07707315591498748
|
2906 |
+
- task:
|
2907 |
+
type: STS
|
2908 |
+
dataset:
|
2909 |
+
type: mteb/sts17-crosslingual-sts
|
2910 |
+
name: MTEB STS17 (es-es)
|
2911 |
+
metrics:
|
2912 |
+
- type: cos_sim_pearson
|
2913 |
+
value: 0.6681873207478459
|
2914 |
+
- type: cos_sim_spearman
|
2915 |
+
value: 0.6780273445636502
|
2916 |
+
- type: euclidean_pearson
|
2917 |
+
value: 0.7060654682977268
|
2918 |
+
- type: euclidean_spearman
|
2919 |
+
value: 0.694566208379486
|
2920 |
+
- type: manhattan_pearson
|
2921 |
+
value: 0.7095484618966419
|
2922 |
+
- type: manhattan_spearman
|
2923 |
+
value: 0.6978323323058773
|
2924 |
+
- task:
|
2925 |
+
type: STS
|
2926 |
+
dataset:
|
2927 |
+
type: mteb/sts17-crosslingual-sts
|
2928 |
+
name: MTEB STS17 (fr-en)
|
2929 |
+
metrics:
|
2930 |
+
- type: cos_sim_pearson
|
2931 |
+
value: 0.21366487281202604
|
2932 |
+
- type: cos_sim_spearman
|
2933 |
+
value: 0.18906275286984808
|
2934 |
+
- type: euclidean_pearson
|
2935 |
+
value: -0.023390998579461995
|
2936 |
+
- type: euclidean_spearman
|
2937 |
+
value: -0.04151213674012541
|
2938 |
+
- type: manhattan_pearson
|
2939 |
+
value: -0.02234831868844863
|
2940 |
+
- type: manhattan_spearman
|
2941 |
+
value: -0.045552913285014415
|
2942 |
+
- task:
|
2943 |
+
type: STS
|
2944 |
+
dataset:
|
2945 |
+
type: mteb/sts17-crosslingual-sts
|
2946 |
+
name: MTEB STS17 (it-en)
|
2947 |
+
metrics:
|
2948 |
+
- type: cos_sim_pearson
|
2949 |
+
value: 0.20731531772510847
|
2950 |
+
- type: cos_sim_spearman
|
2951 |
+
value: 0.163855949033176
|
2952 |
+
- type: euclidean_pearson
|
2953 |
+
value: -0.08734648741714238
|
2954 |
+
- type: euclidean_spearman
|
2955 |
+
value: -0.1075672244732182
|
2956 |
+
- type: manhattan_pearson
|
2957 |
+
value: -0.07536654126608877
|
2958 |
+
- type: manhattan_spearman
|
2959 |
+
value: -0.08330065460047295
|
2960 |
+
- task:
|
2961 |
+
type: STS
|
2962 |
+
dataset:
|
2963 |
+
type: mteb/sts17-crosslingual-sts
|
2964 |
+
name: MTEB STS17 (nl-en)
|
2965 |
+
metrics:
|
2966 |
+
- type: cos_sim_pearson
|
2967 |
+
value: 0.2661843502408425
|
2968 |
+
- type: cos_sim_spearman
|
2969 |
+
value: 0.23488974089577816
|
2970 |
+
- type: euclidean_pearson
|
2971 |
+
value: -0.031310350304707864
|
2972 |
+
- type: euclidean_spearman
|
2973 |
+
value: -0.031242598481634666
|
2974 |
+
- type: manhattan_pearson
|
2975 |
+
value: -0.011096752982707007
|
2976 |
+
- type: manhattan_spearman
|
2977 |
+
value: -0.014591693078765849
|
2978 |
+
- task:
|
2979 |
+
type: Retrieval
|
2980 |
+
dataset:
|
2981 |
+
type: trec-covid
|
2982 |
+
name: MTEB TRECCOVID
|
2983 |
+
metrics:
|
2984 |
+
- type: map_at_1
|
2985 |
+
value: 0.00113
|
2986 |
+
- type: map_at_10
|
2987 |
+
value: 0.00733
|
2988 |
+
- type: map_at_100
|
2989 |
+
value: 0.03313
|
2990 |
+
- type: map_at_1000
|
2991 |
+
value: 0.07355
|
2992 |
+
- type: map_at_3
|
2993 |
+
value: 0.00282
|
2994 |
+
- type: map_at_5
|
2995 |
+
value: 0.00414
|
2996 |
+
- type: ndcg_at_1
|
2997 |
+
value: 0.42
|
2998 |
+
- type: ndcg_at_10
|
2999 |
+
value: 0.3931
|
3000 |
+
- type: ndcg_at_100
|
3001 |
+
value: 0.26904
|
3002 |
+
- type: ndcg_at_1000
|
3003 |
+
value: 0.23778
|
3004 |
+
- type: ndcg_at_3
|
3005 |
+
value: 0.42776
|
3006 |
+
- type: ndcg_at_5
|
3007 |
+
value: 0.41554
|
3008 |
+
- type: precision_at_1
|
3009 |
+
value: 0.48
|
3010 |
+
- type: precision_at_10
|
3011 |
+
value: 0.43
|
3012 |
+
- type: precision_at_100
|
3013 |
+
value: 0.2708
|
3014 |
+
- type: precision_at_1000
|
3015 |
+
value: 0.11014
|
3016 |
+
- type: precision_at_3
|
3017 |
+
value: 0.48
|
3018 |
+
- type: precision_at_5
|
3019 |
+
value: 0.456
|
3020 |
+
- type: recall_at_1
|
3021 |
+
value: 0.00113
|
3022 |
+
- type: recall_at_10
|
3023 |
+
value: 0.00976
|
3024 |
+
- type: recall_at_100
|
3025 |
+
value: 0.05888
|
3026 |
+
- type: recall_at_1000
|
3027 |
+
value: 0.22635
|
3028 |
+
- type: recall_at_3
|
3029 |
+
value: 0.00329
|
3030 |
+
- type: recall_at_5
|
3031 |
+
value: 0.00518
|
3032 |
+
- task:
|
3033 |
+
type: Retrieval
|
3034 |
+
dataset:
|
3035 |
+
type: scifact
|
3036 |
+
name: MTEB SciFact
|
3037 |
+
metrics:
|
3038 |
+
- type: map_at_1
|
3039 |
+
value: 0.21556
|
3040 |
+
- type: map_at_10
|
3041 |
+
value: 0.27982
|
3042 |
+
- type: map_at_100
|
3043 |
+
value: 0.28937
|
3044 |
+
- type: map_at_1000
|
3045 |
+
value: 0.29058
|
3046 |
+
- type: map_at_3
|
3047 |
+
value: 0.25644
|
3048 |
+
- type: map_at_5
|
3049 |
+
value: 0.26996
|
3050 |
+
- type: ndcg_at_1
|
3051 |
+
value: 0.23333
|
3052 |
+
- type: ndcg_at_10
|
3053 |
+
value: 0.31787
|
3054 |
+
- type: ndcg_at_100
|
3055 |
+
value: 0.36648
|
3056 |
+
- type: ndcg_at_1000
|
3057 |
+
value: 0.39936
|
3058 |
+
- type: ndcg_at_3
|
3059 |
+
value: 0.27299
|
3060 |
+
- type: ndcg_at_5
|
3061 |
+
value: 0.29659
|
3062 |
+
- type: precision_at_1
|
3063 |
+
value: 0.23333
|
3064 |
+
- type: precision_at_10
|
3065 |
+
value: 0.04867
|
3066 |
+
- type: precision_at_100
|
3067 |
+
value: 0.00743
|
3068 |
+
- type: precision_at_1000
|
3069 |
+
value: 0.00102
|
3070 |
+
- type: precision_at_3
|
3071 |
+
value: 0.11333
|
3072 |
+
- type: precision_at_5
|
3073 |
+
value: 0.08133
|
3074 |
+
- type: recall_at_1
|
3075 |
+
value: 0.21556
|
3076 |
+
- type: recall_at_10
|
3077 |
+
value: 0.42333
|
3078 |
+
- type: recall_at_100
|
3079 |
+
value: 0.65706
|
3080 |
+
- type: recall_at_1000
|
3081 |
+
value: 0.91489
|
3082 |
+
- type: recall_at_3
|
3083 |
+
value: 0.30361
|
3084 |
+
- type: recall_at_5
|
3085 |
+
value: 0.36222
|
3086 |
+
- task:
|
3087 |
+
type: Retrieval
|
3088 |
+
dataset:
|
3089 |
+
type: scidocs
|
3090 |
+
name: MTEB SCIDOCS
|
3091 |
+
metrics:
|
3092 |
+
- type: map_at_1
|
3093 |
+
value: 0.0172
|
3094 |
+
- type: map_at_10
|
3095 |
+
value: 0.03824
|
3096 |
+
- type: map_at_100
|
3097 |
+
value: 0.04727
|
3098 |
+
- type: map_at_1000
|
3099 |
+
value: 0.04932
|
3100 |
+
- type: map_at_3
|
3101 |
+
value: 0.02867
|
3102 |
+
- type: map_at_5
|
3103 |
+
value: 0.03323
|
3104 |
+
- type: ndcg_at_1
|
3105 |
+
value: 0.085
|
3106 |
+
- type: ndcg_at_10
|
3107 |
+
value: 0.07133
|
3108 |
+
- type: ndcg_at_100
|
3109 |
+
value: 0.11911
|
3110 |
+
- type: ndcg_at_1000
|
3111 |
+
value: 0.16962
|
3112 |
+
- type: ndcg_at_3
|
3113 |
+
value: 0.06763
|
3114 |
+
- type: ndcg_at_5
|
3115 |
+
value: 0.05832
|
3116 |
+
- type: precision_at_1
|
3117 |
+
value: 0.085
|
3118 |
+
- type: precision_at_10
|
3119 |
+
value: 0.0368
|
3120 |
+
- type: precision_at_100
|
3121 |
+
value: 0.01067
|
3122 |
+
- type: precision_at_1000
|
3123 |
+
value: 0.0023
|
3124 |
+
- type: precision_at_3
|
3125 |
+
value: 0.06233
|
3126 |
+
- type: precision_at_5
|
3127 |
+
value: 0.0502
|
3128 |
+
- type: recall_at_1
|
3129 |
+
value: 0.0172
|
3130 |
+
- type: recall_at_10
|
3131 |
+
value: 0.07487
|
3132 |
+
- type: recall_at_100
|
3133 |
+
value: 0.21683
|
3134 |
+
- type: recall_at_1000
|
3135 |
+
value: 0.46688
|
3136 |
+
- type: recall_at_3
|
3137 |
+
value: 0.03798
|
3138 |
+
- type: recall_at_5
|
3139 |
+
value: 0.05113
|
3140 |
+
- task:
|
3141 |
+
type: Retrieval
|
3142 |
+
dataset:
|
3143 |
+
type: nq
|
3144 |
+
name: MTEB NQ
|
3145 |
+
metrics:
|
3146 |
+
- type: map_at_1
|
3147 |
+
value: 0.03515
|
3148 |
+
- type: map_at_10
|
3149 |
+
value: 0.05884
|
3150 |
+
- type: map_at_100
|
3151 |
+
value: 0.0651
|
3152 |
+
- type: map_at_1000
|
3153 |
+
value: 0.06599
|
3154 |
+
- type: map_at_3
|
3155 |
+
value: 0.04892
|
3156 |
+
- type: map_at_5
|
3157 |
+
value: 0.05391
|
3158 |
+
- type: ndcg_at_1
|
3159 |
+
value: 0.04056
|
3160 |
+
- type: ndcg_at_10
|
3161 |
+
value: 0.07626
|
3162 |
+
- type: ndcg_at_100
|
3163 |
+
value: 0.1108
|
3164 |
+
- type: ndcg_at_1000
|
3165 |
+
value: 0.13793
|
3166 |
+
- type: ndcg_at_3
|
3167 |
+
value: 0.05537
|
3168 |
+
- type: ndcg_at_5
|
3169 |
+
value: 0.0645
|
3170 |
+
- type: precision_at_1
|
3171 |
+
value: 0.04056
|
3172 |
+
- type: precision_at_10
|
3173 |
+
value: 0.01457
|
3174 |
+
- type: precision_at_100
|
3175 |
+
value: 0.00347
|
3176 |
+
- type: precision_at_1000
|
3177 |
+
value: 0.00061
|
3178 |
+
- type: precision_at_3
|
3179 |
+
value: 0.02607
|
3180 |
+
- type: precision_at_5
|
3181 |
+
value: 0.02086
|
3182 |
+
- type: recall_at_1
|
3183 |
+
value: 0.03515
|
3184 |
+
- type: recall_at_10
|
3185 |
+
value: 0.12312
|
3186 |
+
- type: recall_at_100
|
3187 |
+
value: 0.28713
|
3188 |
+
- type: recall_at_1000
|
3189 |
+
value: 0.50027
|
3190 |
+
- type: recall_at_3
|
3191 |
+
value: 0.06701
|
3192 |
+
- type: recall_at_5
|
3193 |
+
value: 0.08816
|
3194 |
+
- task:
|
3195 |
+
type: STS
|
3196 |
+
dataset:
|
3197 |
+
type: mteb/sts16-sts
|
3198 |
+
name: MTEB STS16
|
3199 |
+
metrics:
|
3200 |
+
- type: cos_sim_pearson
|
3201 |
+
value: 0.7604750373932828
|
3202 |
+
- type: cos_sim_spearman
|
3203 |
+
value: 0.7793230986462234
|
3204 |
+
- type: euclidean_pearson
|
3205 |
+
value: 0.758320302521164
|
3206 |
+
- type: euclidean_spearman
|
3207 |
+
value: 0.7683154481579385
|
3208 |
+
- type: manhattan_pearson
|
3209 |
+
value: 0.7598713517720608
|
3210 |
+
- type: manhattan_spearman
|
3211 |
+
value: 0.7695479705521506
|
3212 |
+
- task:
|
3213 |
+
type: Classification
|
3214 |
+
dataset:
|
3215 |
+
type: mteb/emotion
|
3216 |
+
name: MTEB EmotionClassification
|
3217 |
+
metrics:
|
3218 |
+
- type: accuracy
|
3219 |
+
value: 0.42225
|
3220 |
+
- type: f1
|
3221 |
+
value: 0.3756351654211211
|
3222 |
+
- task:
|
3223 |
+
type: Retrieval
|
3224 |
+
dataset:
|
3225 |
+
type: BeIR/cqadupstack
|
3226 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
3227 |
+
metrics:
|
3228 |
+
- type: map_at_1
|
3229 |
+
value: 0.13757
|
3230 |
+
- type: map_at_10
|
3231 |
+
value: 0.1927
|
3232 |
+
- type: map_at_100
|
3233 |
+
value: 0.20461
|
3234 |
+
- type: map_at_1000
|
3235 |
+
value: 0.20641
|
3236 |
+
- type: map_at_3
|
3237 |
+
value: 0.17865
|
3238 |
+
- type: map_at_5
|
3239 |
+
value: 0.18618
|
3240 |
+
- type: ndcg_at_1
|
3241 |
+
value: 0.16996
|
3242 |
+
- type: ndcg_at_10
|
3243 |
+
value: 0.22774
|
3244 |
+
- type: ndcg_at_100
|
3245 |
+
value: 0.27675
|
3246 |
+
- type: ndcg_at_1000
|
3247 |
+
value: 0.31145
|
3248 |
+
- type: ndcg_at_3
|
3249 |
+
value: 0.20691
|
3250 |
+
- type: ndcg_at_5
|
3251 |
+
value: 0.21741
|
3252 |
+
- type: precision_at_1
|
3253 |
+
value: 0.16996
|
3254 |
+
- type: precision_at_10
|
3255 |
+
value: 0.04545
|
3256 |
+
- type: precision_at_100
|
3257 |
+
value: 0.01036
|
3258 |
+
- type: precision_at_1000
|
3259 |
+
value: 0.00185
|
3260 |
+
- type: precision_at_3
|
3261 |
+
value: 0.10145
|
3262 |
+
- type: precision_at_5
|
3263 |
+
value: 0.07391
|
3264 |
+
- type: recall_at_1
|
3265 |
+
value: 0.13757
|
3266 |
+
- type: recall_at_10
|
3267 |
+
value: 0.28234
|
3268 |
+
- type: recall_at_100
|
3269 |
+
value: 0.51055
|
3270 |
+
- type: recall_at_1000
|
3271 |
+
value: 0.75353
|
3272 |
+
- type: recall_at_3
|
3273 |
+
value: 0.21794
|
3274 |
+
- type: recall_at_5
|
3275 |
+
value: 0.24614
|
3276 |
+
- task:
|
3277 |
+
type: Clustering
|
3278 |
+
dataset:
|
3279 |
+
type: mteb/reddit-clustering-p2p
|
3280 |
+
name: MTEB RedditClusteringP2P
|
3281 |
+
metrics:
|
3282 |
+
- type: v_measure
|
3283 |
+
value: 0.41007999100992665
|
3284 |
+
- task:
|
3285 |
+
type: Retrieval
|
3286 |
+
dataset:
|
3287 |
+
type: BeIR/cqadupstack
|
3288 |
+
name: MTEB CQADupstackGisRetrieval
|
3289 |
+
metrics:
|
3290 |
+
- type: map_at_1
|
3291 |
+
value: 0.11351
|
3292 |
+
- type: map_at_10
|
3293 |
+
value: 0.14953
|
3294 |
+
- type: map_at_100
|
3295 |
+
value: 0.15623
|
3296 |
+
- type: map_at_1000
|
3297 |
+
value: 0.15716
|
3298 |
+
- type: map_at_3
|
3299 |
+
value: 0.13603
|
3300 |
+
- type: map_at_5
|
3301 |
+
value: 0.14343
|
3302 |
+
- type: ndcg_at_1
|
3303 |
+
value: 0.12429
|
3304 |
+
- type: ndcg_at_10
|
3305 |
+
value: 0.17319
|
3306 |
+
- type: ndcg_at_100
|
3307 |
+
value: 0.2099
|
3308 |
+
- type: ndcg_at_1000
|
3309 |
+
value: 0.23899
|
3310 |
+
- type: ndcg_at_3
|
3311 |
+
value: 0.14605
|
3312 |
+
- type: ndcg_at_5
|
3313 |
+
value: 0.1589
|
3314 |
+
- type: precision_at_1
|
3315 |
+
value: 0.12429
|
3316 |
+
- type: precision_at_10
|
3317 |
+
value: 0.02701
|
3318 |
+
- type: precision_at_100
|
3319 |
+
value: 0.00487
|
3320 |
+
- type: precision_at_1000
|
3321 |
+
value: 0.00078
|
3322 |
+
- type: precision_at_3
|
3323 |
+
value: 0.06026
|
3324 |
+
- type: precision_at_5
|
3325 |
+
value: 0.04384
|
3326 |
+
- type: recall_at_1
|
3327 |
+
value: 0.11351
|
3328 |
+
- type: recall_at_10
|
3329 |
+
value: 0.23536
|
3330 |
+
- type: recall_at_100
|
3331 |
+
value: 0.40942
|
3332 |
+
- type: recall_at_1000
|
3333 |
+
value: 0.6405
|
3334 |
+
- type: recall_at_3
|
3335 |
+
value: 0.16195
|
3336 |
+
- type: recall_at_5
|
3337 |
+
value: 0.19264
|
3338 |
+
- task:
|
3339 |
+
type: STS
|
3340 |
+
dataset:
|
3341 |
+
type: mteb/stsbenchmark-sts
|
3342 |
+
name: MTEB STSBenchmark
|
3343 |
+
metrics:
|
3344 |
+
- type: cos_sim_pearson
|
3345 |
+
value: 0.8000905671833967
|
3346 |
+
- type: cos_sim_spearman
|
3347 |
+
value: 0.7954269211027273
|
3348 |
+
- type: euclidean_pearson
|
3349 |
+
value: 0.7951954544247442
|
3350 |
+
- type: euclidean_spearman
|
3351 |
+
value: 0.7893670303434288
|
3352 |
+
- type: manhattan_pearson
|
3353 |
+
value: 0.7947610653340678
|
3354 |
+
- type: manhattan_spearman
|
3355 |
+
value: 0.7907344156719612
|
3356 |
+
- task:
|
3357 |
+
type: Classification
|
3358 |
+
dataset:
|
3359 |
+
type: mteb/banking77
|
3360 |
+
name: MTEB Banking77Classification
|
3361 |
+
metrics:
|
3362 |
+
- type: accuracy
|
3363 |
+
value: 0.7467857142857142
|
3364 |
+
- type: f1
|
3365 |
+
value: 0.7461743413995573
|
3366 |
+
- task:
|
3367 |
+
type: Retrieval
|
3368 |
+
dataset:
|
3369 |
+
type: BeIR/cqadupstack
|
3370 |
+
name: MTEB CQADupstackStatsRetrieval
|
3371 |
+
metrics:
|
3372 |
+
- type: map_at_1
|
3373 |
+
value: 0.12307
|
3374 |
+
- type: map_at_10
|
3375 |
+
value: 0.1544
|
3376 |
+
- type: map_at_100
|
3377 |
+
value: 0.16033
|
3378 |
+
- type: map_at_1000
|
3379 |
+
value: 0.1614
|
3380 |
+
- type: map_at_3
|
3381 |
+
value: 0.14393
|
3382 |
+
- type: map_at_5
|
3383 |
+
value: 0.14856
|
3384 |
+
- type: ndcg_at_1
|
3385 |
+
value: 0.14571
|
3386 |
+
- type: ndcg_at_10
|
3387 |
+
value: 0.17685
|
3388 |
+
- type: ndcg_at_100
|
3389 |
+
value: 0.20882
|
3390 |
+
- type: ndcg_at_1000
|
3391 |
+
value: 0.23888
|
3392 |
+
- type: ndcg_at_3
|
3393 |
+
value: 0.15739
|
3394 |
+
- type: ndcg_at_5
|
3395 |
+
value: 0.16391
|
3396 |
+
- type: precision_at_1
|
3397 |
+
value: 0.14571
|
3398 |
+
- type: precision_at_10
|
3399 |
+
value: 0.02883
|
3400 |
+
- type: precision_at_100
|
3401 |
+
value: 0.00491
|
3402 |
+
- type: precision_at_1000
|
3403 |
+
value: 0.0008
|
3404 |
+
- type: precision_at_3
|
3405 |
+
value: 0.07004
|
3406 |
+
- type: precision_at_5
|
3407 |
+
value: 0.04693
|
3408 |
+
- type: recall_at_1
|
3409 |
+
value: 0.12307
|
3410 |
+
- type: recall_at_10
|
3411 |
+
value: 0.22566
|
3412 |
+
- type: recall_at_100
|
3413 |
+
value: 0.37469
|
3414 |
+
- type: recall_at_1000
|
3415 |
+
value: 0.6055
|
3416 |
+
- type: recall_at_3
|
3417 |
+
value: 0.16742
|
3418 |
+
- type: recall_at_5
|
3419 |
+
value: 0.18634
|
3420 |
+
- task:
|
3421 |
+
type: STS
|
3422 |
+
dataset:
|
3423 |
+
type: mteb/biosses-sts
|
3424 |
+
name: MTEB BIOSSES
|
3425 |
+
metrics:
|
3426 |
+
- type: cos_sim_pearson
|
3427 |
+
value: 0.7278000135012542
|
3428 |
+
- type: cos_sim_spearman
|
3429 |
+
value: 0.7092812216947605
|
3430 |
+
- type: euclidean_pearson
|
3431 |
+
value: 0.771169214949292
|
3432 |
+
- type: euclidean_spearman
|
3433 |
+
value: 0.7710175681583312
|
3434 |
+
- type: manhattan_pearson
|
3435 |
+
value: 0.7684527031837596
|
3436 |
+
- type: manhattan_spearman
|
3437 |
+
value: 0.7707043080084379
|
3438 |
+
- task:
|
3439 |
+
type: Clustering
|
3440 |
+
dataset:
|
3441 |
+
type: mteb/biorxiv-clustering-p2p
|
3442 |
+
name: MTEB BiorxivClusteringP2P
|
3443 |
+
metrics:
|
3444 |
+
- type: v_measure
|
3445 |
+
value: 0.2893427045246491
|
3446 |
+
- task:
|
3447 |
+
type: Clustering
|
3448 |
+
dataset:
|
3449 |
+
type: mteb/stackexchange-clustering-p2p
|
3450 |
+
name: MTEB StackExchangeClusteringP2P
|
3451 |
+
metrics:
|
3452 |
+
- type: v_measure
|
3453 |
+
value: 0.28230204578753637
|
3454 |
+
- task:
|
3455 |
+
type: Classification
|
3456 |
+
dataset:
|
3457 |
+
type: mteb/toxic_conversations_50k
|
3458 |
+
name: MTEB ToxicConversationsClassification
|
3459 |
+
metrics:
|
3460 |
+
- type: accuracy
|
3461 |
+
value: 0.627862
|
3462 |
+
- type: ap
|
3463 |
+
value: 0.10958454618347832
|
3464 |
+
- type: f1
|
3465 |
+
value: 0.48372434170467626
|
3466 |
+
- task:
|
3467 |
+
type: Clustering
|
3468 |
+
dataset:
|
3469 |
+
type: mteb/twentynewsgroups-clustering
|
3470 |
+
name: MTEB TwentyNewsgroupsClustering
|
3471 |
+
metrics:
|
3472 |
+
- type: v_measure
|
3473 |
+
value: 0.2824295128553035
|
3474 |
+
- task:
|
3475 |
+
type: PairClassification
|
3476 |
+
dataset:
|
3477 |
+
type: mteb/twittersemeval2015-pairclassification
|
3478 |
+
name: MTEB TwitterSemEval2015
|
3479 |
+
metrics:
|
3480 |
+
- type: cos_sim_accuracy
|
3481 |
+
value: 0.815640460153782
|
3482 |
+
- type: cos_sim_accuracy_threshold
|
3483 |
+
value: 0.7118978500366211
|
3484 |
+
- type: cos_sim_ap
|
3485 |
+
value: 0.5709409536692154
|
3486 |
+
- type: cos_sim_f1
|
3487 |
+
value: 0.5529607083563918
|
3488 |
+
- type: cos_sim_f1_threshold
|
3489 |
+
value: 0.5981647968292236
|
3490 |
+
- type: cos_sim_precision
|
3491 |
+
value: 0.47626310772163966
|
3492 |
+
- type: cos_sim_recall
|
3493 |
+
value: 0.6591029023746702
|
3494 |
+
- type: dot_accuracy
|
3495 |
+
value: 0.788162365142755
|
3496 |
+
- type: dot_accuracy_threshold
|
3497 |
+
value: 1049.799072265625
|
3498 |
+
- type: dot_ap
|
3499 |
+
value: 0.4742989400382077
|
3500 |
+
- type: dot_f1
|
3501 |
+
value: 0.5125944584382871
|
3502 |
+
- type: dot_f1_threshold
|
3503 |
+
value: 723.3736572265625
|
3504 |
+
- type: dot_precision
|
3505 |
+
value: 0.4255838271174625
|
3506 |
+
- type: dot_recall
|
3507 |
+
value: 0.6443271767810026
|
3508 |
+
- type: euclidean_accuracy
|
3509 |
+
value: 0.8029445073612684
|
3510 |
+
- type: euclidean_accuracy_threshold
|
3511 |
+
value: 26.134265899658203
|
3512 |
+
- type: euclidean_ap
|
3513 |
+
value: 0.5342012231336148
|
3514 |
+
- type: euclidean_f1
|
3515 |
+
value: 0.5186778356350464
|
3516 |
+
- type: euclidean_f1_threshold
|
3517 |
+
value: 31.25627326965332
|
3518 |
+
- type: euclidean_precision
|
3519 |
+
value: 0.454203013481364
|
3520 |
+
- type: euclidean_recall
|
3521 |
+
value: 0.604485488126649
|
3522 |
+
- type: manhattan_accuracy
|
3523 |
+
value: 0.802884901949097
|
3524 |
+
- type: manhattan_accuracy_threshold
|
3525 |
+
value: 560.0760498046875
|
3526 |
+
- type: manhattan_ap
|
3527 |
+
value: 0.5343205271323233
|
3528 |
+
- type: manhattan_f1
|
3529 |
+
value: 0.520141655599823
|
3530 |
+
- type: manhattan_f1_threshold
|
3531 |
+
value: 658.3975830078125
|
3532 |
+
- type: manhattan_precision
|
3533 |
+
value: 0.44796035074342355
|
3534 |
+
- type: manhattan_recall
|
3535 |
+
value: 0.6200527704485488
|
3536 |
+
- type: max_accuracy
|
3537 |
+
value: 0.815640460153782
|
3538 |
+
- type: max_ap
|
3539 |
+
value: 0.5709409536692154
|
3540 |
+
- type: max_f1
|
3541 |
+
value: 0.5529607083563918
|
3542 |
+
- task:
|
3543 |
+
type: Classification
|
3544 |
+
dataset:
|
3545 |
+
type: mteb/mtop_intent
|
3546 |
+
name: MTEB MTOPIntentClassification (en)
|
3547 |
+
metrics:
|
3548 |
+
- type: accuracy
|
3549 |
+
value: 0.582421340629275
|
3550 |
+
- type: f1
|
3551 |
+
value: 0.40116960466226426
|
3552 |
+
- task:
|
3553 |
+
type: Classification
|
3554 |
+
dataset:
|
3555 |
+
type: mteb/mtop_intent
|
3556 |
+
name: MTEB MTOPIntentClassification (de)
|
3557 |
+
metrics:
|
3558 |
+
- type: accuracy
|
3559 |
+
value: 0.4506903353057199
|
3560 |
+
- type: f1
|
3561 |
+
value: 0.30468468273374966
|
3562 |
+
- task:
|
3563 |
+
type: Classification
|
3564 |
+
dataset:
|
3565 |
+
type: mteb/mtop_intent
|
3566 |
+
name: MTEB MTOPIntentClassification (es)
|
3567 |
+
metrics:
|
3568 |
+
- type: accuracy
|
3569 |
+
value: 0.4880920613742495
|
3570 |
+
- type: f1
|
3571 |
+
value: 0.3265985375400447
|
3572 |
+
- task:
|
3573 |
+
type: Classification
|
3574 |
+
dataset:
|
3575 |
+
type: mteb/mtop_intent
|
3576 |
+
name: MTEB MTOPIntentClassification (fr)
|
3577 |
+
metrics:
|
3578 |
+
- type: accuracy
|
3579 |
+
value: 0.4433761352959599
|
3580 |
+
- type: f1
|
3581 |
+
value: 0.2930204743560644
|
3582 |
+
- task:
|
3583 |
+
type: Classification
|
3584 |
+
dataset:
|
3585 |
+
type: mteb/mtop_intent
|
3586 |
+
name: MTEB MTOPIntentClassification (hi)
|
3587 |
+
metrics:
|
3588 |
+
- type: accuracy
|
3589 |
+
value: 0.34198637504481894
|
3590 |
+
- type: f1
|
3591 |
+
value: 0.2206370603224841
|
3592 |
+
- task:
|
3593 |
+
type: Classification
|
3594 |
+
dataset:
|
3595 |
+
type: mteb/mtop_intent
|
3596 |
+
name: MTEB MTOPIntentClassification (th)
|
3597 |
+
metrics:
|
3598 |
+
- type: accuracy
|
3599 |
+
value: 0.4311030741410488
|
3600 |
+
- type: f1
|
3601 |
+
value: 0.2692408933648504
|
3602 |
+
- task:
|
3603 |
+
type: Clustering
|
3604 |
+
dataset:
|
3605 |
+
type: mteb/reddit-clustering
|
3606 |
+
name: MTEB RedditClustering
|
3607 |
+
metrics:
|
3608 |
+
- type: v_measure
|
3609 |
+
value: 0.3375741018380938
|
3610 |
+
- task:
|
3611 |
+
type: Retrieval
|
3612 |
+
dataset:
|
3613 |
+
type: BeIR/cqadupstack
|
3614 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
3615 |
+
metrics:
|
3616 |
+
- type: map_at_1
|
3617 |
+
value: 0.13909
|
3618 |
+
- type: map_at_10
|
3619 |
+
value: 0.19256
|
3620 |
+
- type: map_at_100
|
3621 |
+
value: 0.20286
|
3622 |
+
- type: map_at_1000
|
3623 |
+
value: 0.20429
|
3624 |
+
- type: map_at_3
|
3625 |
+
value: 0.17399
|
3626 |
+
- type: map_at_5
|
3627 |
+
value: 0.18399
|
3628 |
+
- type: ndcg_at_1
|
3629 |
+
value: 0.17421
|
3630 |
+
- type: ndcg_at_10
|
3631 |
+
value: 0.23106
|
3632 |
+
- type: ndcg_at_100
|
3633 |
+
value: 0.28129
|
3634 |
+
- type: ndcg_at_1000
|
3635 |
+
value: 0.31481
|
3636 |
+
- type: ndcg_at_3
|
3637 |
+
value: 0.19789
|
3638 |
+
- type: ndcg_at_5
|
3639 |
+
value: 0.21237
|
3640 |
+
- type: precision_at_1
|
3641 |
+
value: 0.17421
|
3642 |
+
- type: precision_at_10
|
3643 |
+
value: 0.04331
|
3644 |
+
- type: precision_at_100
|
3645 |
+
value: 0.00839
|
3646 |
+
- type: precision_at_1000
|
3647 |
+
value: 0.00131
|
3648 |
+
- type: precision_at_3
|
3649 |
+
value: 0.094
|
3650 |
+
- type: precision_at_5
|
3651 |
+
value: 0.06776
|
3652 |
+
- type: recall_at_1
|
3653 |
+
value: 0.13909
|
3654 |
+
- type: recall_at_10
|
3655 |
+
value: 0.31087
|
3656 |
+
- type: recall_at_100
|
3657 |
+
value: 0.52946
|
3658 |
+
- type: recall_at_1000
|
3659 |
+
value: 0.76546
|
3660 |
+
- type: recall_at_3
|
3661 |
+
value: 0.21351
|
3662 |
+
- type: recall_at_5
|
3663 |
+
value: 0.25265
|
3664 |
+
- task:
|
3665 |
+
type: Reranking
|
3666 |
+
dataset:
|
3667 |
+
type: mteb/stackoverflowdupquestions-reranking
|
3668 |
+
name: MTEB StackOverflowDupQuestions
|
3669 |
+
metrics:
|
3670 |
+
- type: map
|
3671 |
+
value: 0.3996520488022785
|
3672 |
+
- type: mrr
|
3673 |
+
value: 0.40189248047703935
|
3674 |
+
- task:
|
3675 |
+
type: Retrieval
|
3676 |
+
dataset:
|
3677 |
+
type: BeIR/cqadupstack
|
3678 |
+
name: MTEB CQADupstackRetrieval
|
3679 |
+
metrics:
|
3680 |
+
- type: map_at_1
|
3681 |
+
value: 0.12738416666666666
|
3682 |
+
- type: map_at_10
|
3683 |
+
value: 0.17235916666666667
|
3684 |
+
- type: map_at_100
|
3685 |
+
value: 0.1806333333333333
|
3686 |
+
- type: map_at_1000
|
3687 |
+
value: 0.18184333333333333
|
3688 |
+
- type: map_at_3
|
3689 |
+
value: 0.1574775
|
3690 |
+
- type: map_at_5
|
3691 |
+
value: 0.1657825
|
3692 |
+
- type: ndcg_at_1
|
3693 |
+
value: 0.15487416666666665
|
3694 |
+
- type: ndcg_at_10
|
3695 |
+
value: 0.20290166666666667
|
3696 |
+
- type: ndcg_at_100
|
3697 |
+
value: 0.24412916666666662
|
3698 |
+
- type: ndcg_at_1000
|
3699 |
+
value: 0.27586333333333335
|
3700 |
+
- type: ndcg_at_3
|
3701 |
+
value: 0.17622083333333333
|
3702 |
+
- type: ndcg_at_5
|
3703 |
+
value: 0.18859916666666668
|
3704 |
+
- type: precision_at_1
|
3705 |
+
value: 0.15487416666666665
|
3706 |
+
- type: precision_at_10
|
3707 |
+
value: 0.036226666666666664
|
3708 |
+
- type: precision_at_100
|
3709 |
+
value: 0.006820833333333333
|
3710 |
+
- type: precision_at_1000
|
3711 |
+
value: 0.0011216666666666666
|
3712 |
+
- type: precision_at_3
|
3713 |
+
value: 0.08163749999999999
|
3714 |
+
- type: precision_at_5
|
3715 |
+
value: 0.058654166666666674
|
3716 |
+
- type: recall_at_1
|
3717 |
+
value: 0.12738416666666666
|
3718 |
+
- type: recall_at_10
|
3719 |
+
value: 0.26599416666666664
|
3720 |
+
- type: recall_at_100
|
3721 |
+
value: 0.4541258333333334
|
3722 |
+
- type: recall_at_1000
|
3723 |
+
value: 0.687565
|
3724 |
+
- type: recall_at_3
|
3725 |
+
value: 0.19008166666666668
|
3726 |
+
- type: recall_at_5
|
3727 |
+
value: 0.2224991666666667
|
3728 |
+
- task:
|
3729 |
+
type: PairClassification
|
3730 |
+
dataset:
|
3731 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
3732 |
+
name: MTEB SprintDuplicateQuestions
|
3733 |
+
metrics:
|
3734 |
+
- type: cos_sim_accuracy
|
3735 |
+
value: 0.9949306930693069
|
3736 |
+
- type: cos_sim_accuracy_threshold
|
3737 |
+
value: 0.7870972752571106
|
3738 |
+
- type: cos_sim_ap
|
3739 |
+
value: 0.7773085502917281
|
3740 |
+
- type: cos_sim_f1
|
3741 |
+
value: 0.7178978681209718
|
3742 |
+
- type: cos_sim_f1_threshold
|
3743 |
+
value: 0.7572916746139526
|
3744 |
+
- type: cos_sim_precision
|
3745 |
+
value: 0.711897738446411
|
3746 |
+
- type: cos_sim_recall
|
3747 |
+
value: 0.724
|
3748 |
+
- type: dot_accuracy
|
3749 |
+
value: 0.9908118811881188
|
3750 |
+
- type: dot_accuracy_threshold
|
3751 |
+
value: 1571.5850830078125
|
3752 |
+
- type: dot_ap
|
3753 |
+
value: 0.30267748833368235
|
3754 |
+
- type: dot_f1
|
3755 |
+
value: 0.34335201222618444
|
3756 |
+
- type: dot_f1_threshold
|
3757 |
+
value: 1329.530029296875
|
3758 |
+
- type: dot_precision
|
3759 |
+
value: 0.34994807892004154
|
3760 |
+
- type: dot_recall
|
3761 |
+
value: 0.337
|
3762 |
+
- type: euclidean_accuracy
|
3763 |
+
value: 0.9951683168316832
|
3764 |
+
- type: euclidean_accuracy_threshold
|
3765 |
+
value: 25.715721130371094
|
3766 |
+
- type: euclidean_ap
|
3767 |
+
value: 0.7864498778235628
|
3768 |
+
- type: euclidean_f1
|
3769 |
+
value: 0.7309149972929074
|
3770 |
+
- type: euclidean_f1_threshold
|
3771 |
+
value: 26.336116790771484
|
3772 |
+
- type: euclidean_precision
|
3773 |
+
value: 0.7969303423848878
|
3774 |
+
- type: euclidean_recall
|
3775 |
+
value: 0.675
|
3776 |
+
- type: manhattan_accuracy
|
3777 |
+
value: 0.9953168316831683
|
3778 |
+
- type: manhattan_accuracy_threshold
|
3779 |
+
value: 534.224609375
|
3780 |
+
- type: manhattan_ap
|
3781 |
+
value: 0.7945274878693959
|
3782 |
+
- type: manhattan_f1
|
3783 |
+
value: 0.7419863373620599
|
3784 |
+
- type: manhattan_f1_threshold
|
3785 |
+
value: 562.244140625
|
3786 |
+
- type: manhattan_precision
|
3787 |
+
value: 0.7818383167220376
|
3788 |
+
- type: manhattan_recall
|
3789 |
+
value: 0.706
|
3790 |
+
- type: max_accuracy
|
3791 |
+
value: 0.9953168316831683
|
3792 |
+
- type: max_ap
|
3793 |
+
value: 0.7945274878693959
|
3794 |
+
- type: max_f1
|
3795 |
+
value: 0.7419863373620599
|
3796 |
+
- task:
|
3797 |
+
type: Retrieval
|
3798 |
+
dataset:
|
3799 |
+
type: BeIR/cqadupstack
|
3800 |
+
name: MTEB CQADupstackWordpressRetrieval
|
3801 |
+
metrics:
|
3802 |
+
- type: map_at_1
|
3803 |
+
value: 0.09057
|
3804 |
+
- type: map_at_10
|
3805 |
+
value: 0.12721
|
3806 |
+
- type: map_at_100
|
3807 |
+
value: 0.1345
|
3808 |
+
- type: map_at_1000
|
3809 |
+
value: 0.13564
|
3810 |
+
- type: map_at_3
|
3811 |
+
value: 0.1134
|
3812 |
+
- type: map_at_5
|
3813 |
+
value: 0.12245
|
3814 |
+
- type: ndcg_at_1
|
3815 |
+
value: 0.09797
|
3816 |
+
- type: ndcg_at_10
|
3817 |
+
value: 0.15091
|
3818 |
+
- type: ndcg_at_100
|
3819 |
+
value: 0.18886
|
3820 |
+
- type: ndcg_at_1000
|
3821 |
+
value: 0.2229
|
3822 |
+
- type: ndcg_at_3
|
3823 |
+
value: 0.12365
|
3824 |
+
- type: ndcg_at_5
|
3825 |
+
value: 0.13931
|
3826 |
+
- type: precision_at_1
|
3827 |
+
value: 0.09797
|
3828 |
+
- type: precision_at_10
|
3829 |
+
value: 0.02477
|
3830 |
+
- type: precision_at_100
|
3831 |
+
value: 0.00466
|
3832 |
+
- type: precision_at_1000
|
3833 |
+
value: 0.00082
|
3834 |
+
- type: precision_at_3
|
3835 |
+
value: 0.05299
|
3836 |
+
- type: precision_at_5
|
3837 |
+
value: 0.04067
|
3838 |
+
- type: recall_at_1
|
3839 |
+
value: 0.09057
|
3840 |
+
- type: recall_at_10
|
3841 |
+
value: 0.21319
|
3842 |
+
- type: recall_at_100
|
3843 |
+
value: 0.38999
|
3844 |
+
- type: recall_at_1000
|
3845 |
+
value: 0.65374
|
3846 |
+
- type: recall_at_3
|
3847 |
+
value: 0.14331
|
3848 |
+
- type: recall_at_5
|
3849 |
+
value: 0.17917
|
3850 |
---
|
3851 |
|
3852 |
# SGPT-125M-weightedmean-nli-bitfit
|