File size: 13,607 Bytes
3be1b89 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x784069204e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784069204ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784069204f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784069205000>", "_build": "<function ActorCriticPolicy._build at 0x784069205090>", "forward": "<function ActorCriticPolicy.forward at 0x784069205120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7840692051b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784069205240>", "_predict": "<function ActorCriticPolicy._predict at 0x7840692052d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784069205360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7840692053f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x784069205480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78400b726d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734505263628449073, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKAeiL7T1Tw/N/4tPo14ar6Lkwe9q1KvOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG1hNl7MPjKMAWyUS+6MAXSUR0CghGOqFRHgdX2UKGgGR0BwEAglnh86aAdNHQFoCEdAoIVUAxSHd3V9lChoBkdAOYw+QlruY2gHS8doCEdAoIYak690zXV9lChoBkdAcAyLg4wRG2gHTQ8BaAhHQKCH9bO/tY11fZQoaAZHQHD0mX5WRzRoB00PAWgIR0CgiLDH4oJBdX2UKGgGR0Bw1VFUhmoSaAdNTAFoCEdAoImUwevIO3V9lChoBkdAc6XLRa5f+mgHTSEBaAhHQKCKZKvmozh1fZQoaAZHQEu6kSElE7ZoB0u7aAhHQKCLeDmr8zh1fZQoaAZHQDWq8Djin51oB0vAaAhHQKCMAs4DLbJ1fZQoaAZHQG69ctf5ULloB00tAWgIR0CgjNVWbPQfdX2UKGgGR0BxG0mReTmoaAdL52gIR0CgjXUnXumadX2UKGgGR0BzBsP4EfT1aAdL6GgIR0Cgjq3LNfPYdX2UKGgGR0BzVUPtlZoxaAdNCAFoCEdAoI9izPa+OHV9lChoBkdAclUPNFBppWgHTS4BaAhHQKCQN/J/5L11fZQoaAZHQHBhmJ3xFy9oB00QAWgIR0CgkPKrR0EHdX2UKGgGR0Byb0gSvkimaAdL8mgIR0CgkjSLyc0+dX2UKGgGR0BxUIHfMwDeaAdNNAFoCEdAoJMI8IRh+nV9lChoBkdAcjq34sVclmgHTQgBaAhHQKCTvn+Q2dd1fZQoaAZHQGt8n6Mzdk9oB02wAWgIR0CglYZwwTM8dX2UKGgGR0ByO/8baRISaAdNFAFoCEdAoJZKylenh3V9lChoBkdAcQQPluFYdWgHTREBaAhHQKCXCwmmce91fZQoaAZHQGT/CrksBhhoB03oA2gIR0Cgmm6/h2nsdX2UKGgGR0ByqXvBrN4aaAdNNgFoCEdAoJtEkB0ZFXV9lChoBkdAcEccrRSgoWgHTUUBaAhHQKCdEx7iQ1d1fZQoaAZHQHDA5oCdSVJoB00BAWgIR0CgnfBKlHjIdX2UKGgGR0Bww+k30f5laAdNHQFoCEdAoJ78edTYNHV9lChoBkdAcG8BD5TIemgHTSsBaAhHQKChBXf642F1fZQoaAZHQHCFvCQ9zOpoB00iAWgIR0CgodolD4QCdX2UKGgGR0BxpGWJJoTPaAdNHQFoCEdAoKKfEQ5FPXV9lChoBkdAbron/DLr5mgHTQoBaAhHQKCjUI+nqFB1fZQoaAZHQHCGLNbC79RoB00zAWgIR0CgpLwAlv61dX2UKGgGR0Bwyqm4y44IaAdL9GgIR0CgpV6r3j+8dX2UKGgGR0Bx+qR1X/5taAdL7WgIR0CgpgZq20AtdX2UKGgGR0BvMkAaNuLraAdNFwFoCEdAoKbGr2g3+HV9lChoBkdAcFnLLpzLfWgHTQwBaAhHQKCoCqbSZ0F1fZQoaAZHQE3HZW7voeRoB0u7aAhHQKCoigdOqNp1fZQoaAZHQG6h1fu1F6RoB0v/aAhHQKCpOahpQDV1fZQoaAZHQG81H3lCCz1oB00KAWgIR0CgqfAksz2wdX2UKGgGR0BtbA99tuUEaAdNFQFoCEdAoKtDNIK+jHV9lChoBkdAcHR+oLofS2gHS/xoCEdAoKv2mzjWCnV9lChoBkdAcUcUzbeuWGgHTTMBaAhHQKCszfReC051fZQoaAZHQG9Br1dxAB1oB00NAWgIR0CgrYjI7vG7dX2UKGgGR0BKmq7I1cdHaAdL+2gIR0CgrtbhNucddX2UKGgGR0BxpnT4L1EmaAdNCAFoCEdAoK+LIT4+KXV9lChoBkdAcmog3tKIzmgHS/ZoCEdAoLA3os7MgXV9lChoBkdAboKh8IAwPGgHTSQBaAhHQKCxlOk+HJt1fZQoaAZHQHFz8LF4s3BoB006AWgIR0CgsnIDPnjidX2UKGgGR0BvzzDO1OTJaAdNHQFoCEdAoLM3bM5fdHV9lChoBkdAbhhES/TLGWgHTSEBaAhHQKCz/xR2r4p1fZQoaAZHQG7DLtu1ndxoB00EAWgIR0CgtVXEqDsddX2UKGgGR0Bx5Bqk/KQraAdNKgFoCEdAoLZkXHim23V9lChoBkdAcey8b70nPWgHTU4BaAhHQKC3h14gRsd1fZQoaAZHQG61U5uIhyNoB00AAWgIR0CguILIo3JgdX2UKGgGR0BsrakO7QLNaAdNCQFoCEdAoLpZItlI3HV9lChoBkdAbh0zmfXf7GgHTRYBaAhHQKC7WxFiKBN1fZQoaAZHQHF68YuTRploB00gAWgIR0CgvCFZ5iVjdX2UKGgGR0Bx/LUNKAavaAdNIwFoCEdAoL15SJj2BnV9lChoBkdAcgJy6cy31GgHTTEBaAhHQKC+TKVY6n11fZQoaAZHQHKripaRp11oB00jAWgIR0CgvxRujynUdX2UKGgGR0BtiOjKxLTQaAdNBgFoCEdAoL/P80k4WHV9lChoBkdAcxMDTjNpumgHTSUBaAhHQKDBNF3IMjN1fZQoaAZHQG0/OAiFCcBoB00KAWgIR0CgwfO3trsTdX2UKGgGR0By36Ut7KJVaAdNJgFoCEdAoMK/e1rqMXV9lChoBkdAcHbI1+AmRmgHTSoBaAhHQKDEIa/ATIx1fZQoaAZHQHCAdszl90BoB004AWgIR0CgxPLvLHMmdX2UKGgGR0BtvrHXEqDsaAdNBwFoCEdAoMWoNTcZcnV9lChoBkdAcARyZrpJPWgHTQwBaAhHQKDGYbJfYz11fZQoaAZHQHAGWseXAuZoB00FAWgIR0Cgx60qx1PndX2UKGgGR0BwZdIatLcsaAdNAQFoCEdAoMhh5HEuQXV9lChoBkdAcItMh5gPVmgHTTYBaAhHQKDJNoVVPvd1fZQoaAZHQHFbG8ujASFoB00hAWgIR0CgygbiyY5UdX2UKGgGR0Bzw9CngpBpaAdNPgFoCEdAoMtufGuLaXV9lChoBkdAb8gSZBsyi2gHTSMBaAhHQKDMP+Haewt1fZQoaAZHQHLgEgr6LwZoB00kAWgIR0CgzQeLehwmdX2UKGgGR0BwfiH1vl2eaAdNOgFoCEdAoM57Qu27WnV9lChoBkdAb6qtqYZ2p2gHTREBaAhHQKDPO4+bExZ1fZQoaAZHQHA41+7UXpJoB00OAWgIR0Cg0DxDTjNqdX2UKGgGR0BwoSeTV2A5aAdNCQFoCEdAoNEg+4b0e3V9lChoBkdAbwoE8q4H5mgHTRYBaAhHQKDS912aDwp1fZQoaAZHQG1m4nndO7BoB00sAWgIR0Cg1CTGgi/xdX2UKGgGR0BsR6zzErGzaAdNGQFoCEdAoNUmb9ZRsXV9lChoBkdAcaCaC+UQkGgHTRMBaAhHQKDWgHO8kD91fZQoaAZHQHMuBsANoaloB0vhaAhHQKDXGmqHXVd1fZQoaAZHQHHMQxSHdoFoB0v4aAhHQKDXyC+UQkJ1fZQoaAZHQHBnvqs2ehBoB00pAWgIR0Cg2JfZ26kJdX2UKGgGR0Bvlx3PiT+vaAdNEwFoCEdAoNnoaLn9vXV9lChoBkdAcMuDpTuOTGgHTSUBaAhHQKDaufEn9eh1fZQoaAZHQHCzhaX8fmtoB00kAWgIR0Cg24NUXHindX2UKGgGR0Bwfs4wRGtqaAdNIQFoCEdAoNxT+3pfQnV9lChoBkdAcF180DU3GWgHTSQBaAhHQKDdtBvaURp1fZQoaAZHQHEljYqXnhdoB00qAWgIR0Cg3oYAsCkodX2UKGgGR0BxRUTh5xBFaAdNCQFoCEdAoN83863iJnV9lChoBkdAcAPAdGRV62gHTSYBaAhHQKDgnnkDIR11fZQoaAZHQEzkV58jRlZoB0uoaAhHQKDhEaPS2IB1fZQoaAZHQHDlxCUornVoB00/AWgIR0Cg4fFmvnr6dX2UKGgGR0BxoNeMQ2/BaAdNJQFoCEdAoOK+tlqagHV9lChoBkdAcSvQbuMMqmgHTQwBaAhHQKDkCrNnoPl1fZQoaAZHQHE7N0/4ZdhoB00FAWgIR0Cg5MNsvZh8dX2UKGgGR0BxwMK/mDDkaAdNKwFoCEdAoOWQOJ+DvnV9lChoBkdAcK53kxREW2gHTSgBaAhHQKDmXc6/7BR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRZynYx+x+tpSBqfKTVyCjkwCMA2luY5SKEX8IwPBtZfvc4CM0fmNf+YcAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQkpnNoXbeMftDHs3w1L1gdYwDaW5jlIoQObceuQpcm3RF6+OKtPTtZHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoFjD4EiAB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |