File size: 922 Bytes
6dbf09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import joblib
import numpy as np
from sentence_transformers import SentenceTransformer
# Load the models
model1 = joblib.load('model1.joblib')
model2 = joblib.load('model2.joblib')
# Load the embedder
embedder = SentenceTransformer('BAAI/bge-large-en-v1.5')
def predict_sentiment(text):
# Generate embedding
embedding = embedder.encode([text])
# Make predictions
pred1 = model1.predict(embedding)[0]
pred2 = model2.predict(embedding)[0]
# Average and round
final_prediction = np.round((pred1 + pred2) / 2).astype(int)
return final_prediction, pred1, pred2
# Example usage
if __name__ == "__main__":
test_text = "I really enjoyed this product!"
final_score, score1, score2 = predict_sentiment(test_text)
print(f"Text: {test_text}")
print(f"Final sentiment score: {final_score}")
print(f"Model 1 score: {score1}")
print(f"Model 2 score: {score2}")
|