File size: 3,182 Bytes
6dbf09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Sentiment Analysis Model Demo\n",
    "This notebook demonstrates how to use the sentiment analysis models to predict sentiment for new text."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import joblib\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from sentence_transformers import SentenceTransformer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the models\n",
    "model1 = joblib.load('model1.joblib')\n",
    "model2 = joblib.load('model2.joblib')\n",
    "\n",
    "# Load the embedder\n",
    "embedder = SentenceTransformer('BAAI/bge-large-en-v1.5')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict_sentiment(text):\n",
    "    # Generate embedding\n",
    "    embedding = embedder.encode([text])\n",
    "    \n",
    "    # Make predictions\n",
    "    pred1 = model1.predict(embedding)[0]\n",
    "    pred2 = model2.predict(embedding)[0]\n",
    "    \n",
    "    # Average and round\n",
    "    final_prediction = np.round((pred1 + pred2) / 2).astype(int)\n",
    "    \n",
    "    return final_prediction, pred1, pred2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Try with a sample text\n",
    "sample_text = \"I absolutely loved this movie! The actors were amazing and the plot was fantastic.\"\n",
    "final_score, score1, score2 = predict_sentiment(sample_text)\n",
    "\n",
    "print(f\"Text: {sample_text}\")\n",
    "print(f\"Final sentiment score: {final_score}\")\n",
    "print(f\"Model 1 score: {score1}\")\n",
    "print(f\"Model 2 score: {score2}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Try with multiple texts\n",
    "texts = [\n",
    "    \"This product is terrible. Complete waste of money.\",\n",
    "    \"The service was okay, nothing special.\",\n",
    "    \"Absolutely fantastic experience! Would highly recommend.\",\n",
    "    \"Not what I expected, but it wasn't bad either.\"\n",
    "]\n",
    "\n",
    "results = []\n",
    "for text in texts:\n",
    "    final_score, score1, score2 = predict_sentiment(text)\n",
    "    results.append({\n",
    "        'Text': text,\n",
    "        'Final Score': final_score,\n",
    "        'Expert 1 Score': score1,\n",
    "        'Expert 2 Score': score2\n",
    "    })\n",
    "\n",
    "pd.DataFrame(results)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}