File size: 27,495 Bytes
6cd6a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0012f0c
6cd6a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import math
from typing import List

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from loguru import logger

try:
    motif_ops = torch.ops.motif
    MotifRMSNorm = motif_ops.T5LayerNorm
    ScaledDotProductAttention = None
    MotifFlashAttention = motif_ops.flash_attention
except Exception: # if motif_ops is not available
    MotifRMSNorm = None
    ScaledDotProductAttention = None
    MotifFlashAttention = None

NUM_MODULATIONS = 6
SD3_LATENT_CHANNEL = 16
LOW_RES_POSEMB_BASE_SIZE = 16
HIGH_RES_POSEMB_BASE_SIZE = 64 

class IdentityConv2d(nn.Module):
    def __init__(self, channels, kernel_size=3, stride=1, padding=1, bias=True):
        super().__init__()

        self.conv = nn.Conv2d(
            in_channels=channels,
            out_channels=channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

        self._initialize_identity()

    def _initialize_identity(self):
        k = self.conv.kernel_size[0]

        nn.init.zeros_(self.conv.weight)

        center = k // 2
        for i in range(self.conv.in_channels):
            self.conv.weight.data[i, i, center, center] = 1.0

        if self.conv.bias is not None:
            nn.init.zeros_(self.conv.bias)

    def forward(self, x):
        return self.conv(x)


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps
        self.mask = None

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float)
        if self.mask is not None:
            hidden_states = self.mask.to(hidden_states.device).to(hidden_states.dtype) * hidden_states
        variance = hidden_states.pow(2).sum(-1, keepdim=True)
        if self.mask is not None:
            variance /= torch.count_nonzero(self.mask)
        else:
            variance /= hidden_states.shape[-1]
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class MLP(nn.Module):
    def __init__(self, input_size, hidden_size=None):
        super().__init__()
        if hidden_size is None:
            self.input_size, self.hidden_size = input_size, input_size * 4
        else:
            self.input_size, self.hidden_size = input_size, hidden_size

        self.gate_proj = nn.Linear(self.input_size, self.hidden_size)
        self.down_proj = nn.Linear(self.hidden_size, self.input_size)

        self.act_fn = nn.SiLU()

    def forward(self, x):
        down_proj = self.act_fn(self.gate_proj(x))
        down_proj = self.down_proj(down_proj)

        return down_proj


class TextTimeEmbToGlobalParams(nn.Module):
    def __init__(self, emb_dim, hidden_dim):
        super().__init__()
        self.projection = nn.Linear(emb_dim, hidden_dim * NUM_MODULATIONS)

    def forward(self, emb):
        emb = F.silu(emb)  # emb: B x D
        params = self.projection(emb)  # emb: B x C
        params = params.reshape(params.shape[0], NUM_MODULATIONS, params.shape[-1] // NUM_MODULATIONS)  # emb: B x 6 x C
        return params.chunk(6, dim=1)  # [B x 1 x C] x 6


class TextTimeEmbedding(nn.Module):
    """
    Input:
        pooled_text_emb (B x C_l)
        time_steps (B)

    Output:
        ()
    """

    def __init__(self, time_channel, text_channel, embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0):
        super().__init__()
        self.time_proj = Timesteps(
            time_channel, flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=downscale_freq_shift
        )
        self.time_emb = TimestepEmbedding(time_channel, time_channel * 4, out_dim=embed_dim)  # Encode time emb with MLP
        self.pooled_text_emb = TimestepEmbedding(
            text_channel, text_channel * 4, out_dim=embed_dim
        )  # Encode pooled text with MLP

    def forward(self, pooled_text_emb, time_steps):
        time_steps = self.time_proj(time_steps)
        time_emb = self.time_emb(time_steps.to(dtype=torch.bfloat16))
        pooled_text_emb = self.pooled_text_emb(pooled_text_emb)

        return time_emb + pooled_text_emb


class LatentPatchModule(nn.Module):
    def __init__(self, patch_size, embedding_dim, latent_channels, vae_type):
        super().__init__()
        self.patch_size = patch_size
        self.embedding_dim = embedding_dim
        self.projection_SD3 = nn.Conv2d(SD3_LATENT_CHANNEL, embedding_dim, kernel_size=patch_size, stride=patch_size)
        self.latent_channels = latent_channels

    def forward(self, x):
        assert (
            x.shape[1] == SD3_LATENT_CHANNEL
        ), f"VAE-Latent channel is not matched with '{SD3_LATENT_CHANNEL}'. current shape: {x.shape}"
        patches = self.projection_SD3(
            x.to(dtype=torch.bfloat16)
        )  # Shape: (B, embedding_dim, num_patches_h, num_patches_w)
        patches = patches.to(dtype=torch.bfloat16)
        patches = patches.contiguous()
        patches = patches.flatten(2)  # Shape: (B, embedding_dim, num_patches)

        patches = patches.transpose(1, 2)  # Shape: (B, num_patches, embedding_dim)
        patches = patches.contiguous()
        return patches

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        n = x.shape[0]
        c = self.latent_channels
        p = self.patch_size

        # check the valid patching
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.contiguous()
        # (N x T x [C * patch_size**2]) -> (N x H x W x P_1 x P_2 x C)
        x = x.reshape(shape=(n, h, w, p, p, c))
        # x = torch.einsum('nhwpqc->nchpwq', x)  # Note that einsum possibly be the problem.

        # (N x H x W x P_1 x P_2 x C) -> (N x C x H x P_1 x W x P_2)
        # (0 . 1 . 2 .  3 .   4 .  5) -> (0 . 5 . 1 .  3    2 .  4 )
        x = x.permute(0, 5, 1, 3, 2, 4)
        return x.reshape(shape=(n, c, h * p, h * p)).contiguous()


class TextConditionModule(nn.Module):
    def __init__(self, text_dim, latent_dim):
        super().__init__()
        self.projection = nn.Linear(text_dim, latent_dim)

    def forward(self, t5_xxl, clip_a, clip_b):
        clip_emb = torch.cat([clip_a, clip_b], dim=-1)
        clip_emb = torch.nn.functional.pad(clip_emb, (0, t5_xxl.shape[-1] - clip_emb.shape[-1]))
        text_emb = torch.cat([clip_emb, t5_xxl], dim=-2)
        text_emb = self.projection(text_emb.to(torch.bfloat16))
        return text_emb


class MotifDiTBlock(nn.Module):
    def __init__(self, emb_dim, t_emb_dim, attn_emb_dim, mlp_dim, attn_config, text_dim=4096):
        super().__init__()
        self.affine_params_c = TextTimeEmbToGlobalParams(t_emb_dim, emb_dim)
        self.affine_params_x = TextTimeEmbToGlobalParams(t_emb_dim, emb_dim)

        self.norm_1_c = nn.LayerNorm(emb_dim, elementwise_affine=False)
        self.norm_1_x = nn.LayerNorm(emb_dim, elementwise_affine=False)
        self.linear_1_c = nn.Linear(emb_dim, attn_emb_dim)
        self.linear_1_x = nn.Linear(emb_dim, attn_emb_dim)

        self.attn = JointAttn(attn_config)
        self.norm_2_c = nn.LayerNorm(emb_dim, elementwise_affine=False)
        self.norm_2_x = nn.LayerNorm(emb_dim, elementwise_affine=False)
        self.mlp_3_c = MLP(emb_dim, mlp_dim)
        self.mlp_3_x = MLP(emb_dim, mlp_dim)

    def forward(self, x_emb, c_emb, t_emb, perturbed=False):
        """
        x_emb (N, TOKEN_LENGTH x 2, C)
        c_emb (N, T + REGISTER_TOKENS, C)
        t_emb (N, modulation_dim)
        """

        device = x_emb.device

        # get global affine transformation parameters
        alpha_x, beta_x, gamma_x, delta_x, epsilon_x, zeta_x = self.affine_params_x(t_emb)  # scale and shift for image
        alpha_c, beta_c, gamma_c, delta_c, epsilon_c, zeta_c = self.affine_params_c(t_emb)  # scale and shift for text

        # projection and affine transform before attention
        x_emb_pre_attn = self.linear_1_x((1 + alpha_x) * self.norm_1_x(x_emb) + beta_x)
        c_emb_pre_attn = self.linear_1_c((1 + alpha_c) * self.norm_1_c(c_emb) + beta_c)

        # attn_output, attn_weight (None), past_key_value (None)
        x_emb_post_attn, c_emb_post_attn = self.attn(
            x_emb_pre_attn, c_emb_pre_attn, perturbed
        )  # mixed feature for both text and image (N, [T_x + T_c], C)

        # scale with gamma and residual with the original inputs
        x_emb_post_attn = x_emb_post_attn.to(gamma_x.device)
        x_emb_post_attn = (1 + gamma_x) * x_emb_post_attn + x_emb  # NOTE: nan loss for self.linear_2_x.bias
        c_emb_post_attn = c_emb_post_attn.to(gamma_c.device)
        c_emb_post_attn = (1 + gamma_c) * c_emb_post_attn + c_emb

        # norm the features -> affine transform with modulation -> MLP
        normalized_x_emb = self.norm_2_x(x_emb_post_attn).to(delta_x.device)
        normalized_c_emb = self.norm_2_c(c_emb_post_attn).to(delta_c.device)
        x_emb_final = self.mlp_3_x(delta_x * normalized_x_emb + epsilon_x)
        c_emb_final = self.mlp_3_c(delta_c * normalized_c_emb + epsilon_c)

        # final scaling with zeta and residual with the original inputs
        x_emb_final = zeta_x.to(device) * x_emb_final.to(device) + x_emb.to(device)
        c_emb_final = zeta_c.to(device) * c_emb_final.to(device) + c_emb.to(device)

        return x_emb_final, c_emb_final


class MotifDiT(nn.Module):
    ENCODED_TEXT_DIM = 4096

    def __init__(self, config):
        super(MotifDiT, self).__init__()
        self.patch_size = config.patch_size
        self.h, self.w = config.height // config.vae_compression, config.width // config.vae_compression

        self.latent_chennels = 16

        # Embedding for (1) text; (2) input image; (3) time
        self.text_cond = TextConditionModule(self.ENCODED_TEXT_DIM, config.hidden_dim)
        self.patching = LatentPatchModule(config.patch_size, config.hidden_dim, self.latent_chennels, config.vae_type)
        self.time_emb = TextTimeEmbedding(config.time_embed_dim, config.pooled_text_dim, config.modulation_dim)

        # main multi-modal DiT blocks
        self.mmdit_blocks = nn.ModuleList(
            [
                MotifDiTBlock(
                    config.hidden_dim, config.modulation_dim, config.hidden_dim, config.mlp_hidden_dim, config
                )
                for layer_idx in range(config.num_layers)
            ]
        )

        self.final_modulation = nn.Linear(config.modulation_dim, config.hidden_dim * 2)
        self.final_linear_SD3 = nn.Linear(config.hidden_dim, SD3_LATENT_CHANNEL * config.patch_size**2)
        self.skip_register_token_num = config.skip_register_token_num

        if getattr(config, "pos_emb_size", None):
            pos_emb_size = config.pos_emb_size
        else:
            pos_emb_size = HIGH_RES_POSEMB_BASE_SIZE if config.height > 512 else LOW_RES_POSEMB_BASE_SIZE
        logger.info(f"Positional embedding of Motif-DiT is set to {pos_emb_size}")

        self.pos_embed = torch.from_numpy(
            get_2d_sincos_pos_embed(
                config.hidden_dim, (self.h // self.patch_size, self.w // self.patch_size), base_size=pos_emb_size
            )
        ).to(device="cuda", dtype=torch.bfloat16)

        # set register tokens (https://arxiv.org/abs/2309.16588)
        if config.register_token_num > 0:
            self.register_token_num = config.register_token_num
            self.register_tokens = nn.Parameter(torch.randn(1, self.register_token_num, config.hidden_dim))
            self.register_parameter("register_tokens", self.register_tokens)

            # if needed, add additional register tokens for higher resolution training
            self.additional_register_token_num = config.additional_register_token_num
            if config.additional_register_token_num > 0:
                self.register_tokens_highres = nn.Parameter(
                    torch.randn(1, self.additional_register_token_num, config.hidden_dim)
                )
                self.register_parameter("register_tokens_highres", self.register_tokens_highres)

        if config.use_final_layer_norm:
            self.final_norm = nn.LayerNorm(config.hidden_dim)

        if config.conv_header:
            logger.info("use convolution header after de-patching")
            self.depatching_conv_header = IdentityConv2d(SD3_LATENT_CHANNEL)

        if config.use_time_token_in_attn:
            self.t_token_proj = nn.Linear(config.modulation_dim, config.hidden_dim)

    def forward(self, latent, t, text_embs: List[torch.Tensor], pooled_text_embs, guiding_feature=None):
        """
        latent (torch.Tensor)
        t (torch.Tensor)
        text_embs (List[torch.Tensor])
        pooled_text_embs (torch.Tensor)
        """
        # 1. get inputs for the MMDiT blocks
        emb_c = self.text_cond(*text_embs)  # (N, L, D), text conditions
        emb_t = self.time_emb(pooled_text_embs, t).to(emb_c.device)  # (N, D), time and pooled text conditions

        emb_x = (self.patching(latent) + self.pos_embed).to(
            emb_c.device
        )  # (N, T, D), where T = H*W / (patch_size ** 2), input latent patches

        # additional "register" tokens, to convey the global information and prevent high-norm abnormal patch
        # see https://openreview.net/forum?id=2dnO3LLiJ1
        if hasattr(self, "register_tokens"):
            if hasattr(self, "register_tokens_highres"):
                emb_x = torch.cat(
                    (
                        self.register_tokens_highres.expand(emb_x.shape[0], -1, -1),
                        self.register_tokens.expand(emb_x.shape[0], -1, -1),
                        emb_x,
                    ),
                    dim=1,
                )
            else:
                emb_x = torch.cat((self.register_tokens.expand(emb_x.shape[0], -1, -1), emb_x), dim=1)

        # time embedding into text embedding
        if hasattr(self, "use_time_token_in_attn"):
            t_token = self.t_token_proj(emb_t).unsqueeze(1)
            emb_c = torch.cat([emb_c, t_token], dim=1)  # (N, [T_c + 1], C)

        # 2. MMDiT Blocks
        for block_idx, block in enumerate(self.mmdit_blocks):
            emb_x, emb_c = block(emb_x, emb_c, emb_t)

            # accumulating the feature_similarity loss
            # TODO: add modeling_dit related test
            if hasattr(self, "num_feature_align_layers") and block_idx == self.num_feature_align_layers:
                self.feature_alignment_loss = self.feature_align_mlp(emb_x, guiding_feature)  # exclude register tokens

            # Remove the register tokens at the certain layer (the last layer as default).
            if block_idx == len(self.mmdit_blocks) - (1 + self.skip_register_token_num):
                if hasattr(self, "register_tokens_highres"):
                    emb_x = emb_x[
                        :, self.register_token_num + self.additional_register_token_num :
                    ]  # remove the register tokens for the output layer
                elif hasattr(self, "register_tokens"):
                    emb_x = emb_x[:, self.register_token_num :]  # remove the register tokens for the output layer

        # 3. final modulation (shift-and-scale)
        scale, shift = self.final_modulation(emb_t).chunk(2, -1)  # (N, D) x 2
        scale, shift = scale.unsqueeze(1), shift.unsqueeze(1)  # (N, 1, D) x 2

        if hasattr(self, "final_norm"):
            emb_x = self.final_norm(emb_x)

        final_emb = (scale + 1) * emb_x + shift

        # 4. final linear layer to reduce channel and un-patching
        emb_x = self.final_linear_SD3(final_emb)  # (N, T, D) to (N, T, out_channels * patch_size**2)
        emb_x = self.patching.unpatchify(emb_x)  # (N, out_channels, H, W)

        if hasattr(self, "depatching_conv_header"):
            emb_x = self.depatching_conv_header(emb_x)
        return emb_x


class JointAttn(nn.Module):
    """
    SD3 style joint-attention layer
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_dim
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)

        self.add_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.add_k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.add_v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)

        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self.add_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.q_norm_x = MotifRMSNorm(self.head_dim) if MotifRMSNorm else RMSNorm(self.head_dim)
        self.k_norm_x = MotifRMSNorm(self.head_dim) if MotifRMSNorm else RMSNorm(self.head_dim)

        self.q_norm_c = MotifRMSNorm(self.head_dim) if MotifRMSNorm else RMSNorm(self.head_dim)
        self.k_norm_c = MotifRMSNorm(self.head_dim) if MotifRMSNorm else RMSNorm(self.head_dim)
        self.q_scale = nn.Parameter(torch.ones(self.num_heads))

        # Attention mode : {'sdpa', 'flash', None}
        self.attn_mode = config.attn_mode

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size = encoder_hidden_states.shape[0]

        # `sample` projections.
        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        # `context` projections.
        query_c = self.add_q_proj(encoder_hidden_states)
        key_c = self.add_k_proj(encoder_hidden_states)
        value_c = self.add_v_proj(encoder_hidden_states)

        # head first
        inner_dim = key.shape[-1]
        head_dim = inner_dim // self.num_heads

        def norm_qk(x, f_norm):
            x = x.view(batch_size, -1, self.num_heads, head_dim)
            b, l, h, d_h = x.shape
            x = x.reshape(b * l, h, d_h)
            x = f_norm(x)
            return x.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)  # [b, h, l, d_h]

        query = norm_qk(query, self.q_norm_x)  # [b, h, l, d_h]
        key = norm_qk(key, self.k_norm_x)  # [b, h, l, d_h]
        value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)  # [b, h, l, d_h]

        query_c = norm_qk(query_c, self.q_norm_c) * self.q_scale.reshape(1, self.num_heads, 1, 1)  # [b, h, l_c, d]
        key_c = norm_qk(key_c, self.k_norm_c)  # [b, h, l_c, d]
        value_c = value_c.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)  # [b, h, l_c, d]

        # attention
        query = torch.cat([query, query_c], dim=2).contiguous()  # [b, h, l + l_c, d]
        key = torch.cat([key, key_c], dim=2).contiguous()  # [b, h, l + l_c, d]
        value = torch.cat([value, value_c], dim=2).contiguous()  # [b, h, l + l_c, d]

        # deprecated.
        hidden_states = self.joint_attention(batch_size, query, key, value, head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        hidden_states, encoder_hidden_states = (
            hidden_states[:, : residual.shape[1]],
            hidden_states[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states = self.o_proj(hidden_states)
        encoder_hidden_states = self.add_o_proj(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        return hidden_states, encoder_hidden_states

    def joint_attention(self, batch_size, query, key, value, head_dim):
        if self.attn_mode == "sdpa" and ScaledDotProductAttention is not None:
            # NOTE: SDPA does not support high-resolution (long-context).
            q_len = query.size(-2)
            masked_bias = torch.zeros((batch_size, self.num_heads, query.size(-2), key.size(-2)), device="cuda")

            query = query.transpose(1, 2).reshape(batch_size, q_len, self.hidden_size).contiguous()
            key = key.transpose(1, 2).reshape(batch_size, q_len, self.hidden_size).contiguous()
            value = value.transpose(1, 2).reshape(batch_size, q_len, self.hidden_size).contiguous()

            scale_factor = 1.0
            scale_factor /= float(self.head_dim) ** 0.5

            hidden_states = ScaledDotProductAttention(
                query,
                key,
                value,
                masked_bias,
                dropout_rate=0.0,
                training=self.training,
                attn_weight_scale_factor=scale_factor,
                num_kv_groups=1,
            )
        elif self.attn_mode == "flash" and MotifFlashAttention is not None:
            query = query.permute(0, 2, 1, 3).contiguous()  # [b, l + l_c, h, d]
            key = key.permute(0, 2, 1, 3).contiguous()  # [b, l + l_c, h, d]
            value = value.permute(0, 2, 1, 3).contiguous()  # [b, l + l_c, h, d]
            scale_factor = 1.0 / math.sqrt(self.head_dim)

            # NOTE (1): masking of motif flash-attention uses (`1`: un-mask, `0`: mask) and has [Batch, Seq] shape
            # NOTE (2): Q,K,V must be [Batch, Seq, Heads, Dim] and contiguous.
            mask = torch.ones((batch_size, query.size(-3))).cuda()
            hidden_states = MotifFlashAttention(
                query,
                key,
                value,
                padding_mask=mask,
                softmax_scale=scale_factor,
                causal=False,
            )
            hidden_states = hidden_states.reshape(batch_size, -1, self.num_heads * head_dim).contiguous()
        else:
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0)
            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * head_dim)

        return hidden_states

    @staticmethod
    def alt_scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, scale=None) -> torch.Tensor:
        """
        Pure-pytorch version of the xformers.scaled_dot_product_attention
        (or F.scaled_dot_product_attention from torch>2.0.0)

        Args:
            query (Tensor): query tensor
            key (Tensor): key tensor
            value (Tensor): value tensor
            attn_mask (Tensor, optional): attention mask. Defaults to None.
            dropout_p (float, optional): attention dropout probability. Defaults to 0.0.
            scale (Tensor or float, optional): scaling for QK. Defaults to None.

        Returns:
            torch.Tensor: attention score (after softmax)
        """
        L, S = query.size(-2), key.size(-2)
        scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
        attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn_weight = query @ key.transpose(-2, -1) * scale_factor  # B, L, S
        attn_weight += attn_bias
        attn_weight = torch.softmax(attn_weight, dim=-1)  # B, L, S
        attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
        return attn_weight @ value  # B, L, S * S, D -> B, L, D


# ===============================================
# Sine/Cosine Positional Embedding Functions
# ===============================================
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if not isinstance(grid_size, tuple):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / scale
    if base_size is not None:
        grid_h *= base_size / grid_size[0]
        grid_w *= base_size / grid_size[1]
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0):
    pos = np.arange(0, length)[..., None] / scale
    return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb