|
--- |
|
license: apache-2.0 |
|
--- |
|
### This model is trained from Mistral-7B-Instruct-V0.2 with 90% chinese dataset and 10% english dataset |
|
github [Web-UI](https://github.com/moseshu/llama2-chat/tree/main/webui) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f4c7172f63f904a0c61ba3/JIeyxhTm9_PNzXyU7wQVd.png) |
|
|
|
``` |
|
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer,AutoModelForCausalLM,MistralForCausalLM |
|
import torch |
|
|
|
model_id=Mistral-7B-Instruct-v0.4 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",) |
|
|
|
chat_template="{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" |
|
|
|
def chat_format(conversation:list): |
|
system_prompt = "You are a helpful, respectful and honest assistant.Help humman as much as you can." |
|
|
|
id = tokenizer.apply_chat_template(conversation,chat_template=chat_template,tokenize=False) |
|
|
|
return id |
|
|
|
user_chat=[{"role":"user","content":"你好,最近在干嘛呢"}] |
|
text = chat_format(user_chat).rstrip("</s>") |
|
def predict(content_prompt): |
|
inputs = tokenizer(content_prompt,return_tensors="pt",add_special_tokens=True) |
|
input_ids = inputs["input_ids"].to("cuda:0") |
|
# print(f"input length:{len(input_ids[0])}") |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
#generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=2048, |
|
top_p=0.9, |
|
num_beams=1, |
|
do_sample=True, |
|
repetition_penalty=1.0, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s,skip_special_tokens=True) |
|
output1 = output.split("[/INST]")[-1].strip() |
|
# print(output1) |
|
return output1 |
|
|
|
predict(text) |
|
output:你好!作为一个大型语言模型,我一直在学习和提高自己的能力。最近,我一直在努力学习新知识、改进算法,以便更好地回答用户的问题并提供帮助。同时,我也会定期接受人工智能专家的指导和评估,以确保我的表现不断提升。希望这些信息对你有所帮助! |
|
``` |
|
|
|
|
|
## vllm server |
|
``` |
|
llama2-chat-template.jinja file is chat-template above |
|
model_path=Mistral-7B-Instruct-V0.4 |
|
python -m vllm.entrypoints.openai.api_server --model=$model_path \ |
|
--trust-remote-code --host 0.0.0.0 --port 7777 \ |
|
--gpu-memory-utilization 0.8 \ |
|
--max-model-len 8192 --chat-template llama2-chat-template.jinja \ |
|
--tensor-parallel-size 1 --served-model-name chatbot |
|
``` |
|
``` |
|
|
|
from openai import OpenAI |
|
# Set OpenAI's API key and API base to use vLLM's API server. |
|
openai_api_key = "EMPTY" |
|
openai_api_base = "http://localhost:7777/v1" |
|
|
|
client = OpenAI( |
|
api_key=openai_api_key, |
|
base_url=openai_api_base, |
|
) |
|
call_args = { |
|
'temperature': 0.7, |
|
'top_p': 0.9, |
|
'top_k': 40, |
|
'max_tokens': 2048, # output-len |
|
'presence_penalty': 1.0, |
|
'frequency_penalty': 0.0, |
|
"repetition_penalty":1.0, |
|
"stop":["</s>"], |
|
} |
|
chat_response = client.chat.completions.create( |
|
model="llama", |
|
messages=[ |
|
{"role": "user", "content": "你好"}, |
|
], |
|
extra_body=call_args |
|
) |
|
print("Chat response:", chat_response) |
|
|
|
|
|
``` |