Moses25's picture
Update README.md
bac51cb verified
|
raw
history blame
4.01 kB
---
license: apache-2.0
---
### This model is trained from Mistral-7B-Instruct-V0.2 with 90% chinese dataset and 10% english dataset
github [Web-UI](https://github.com/moseshu/llama2-chat/tree/main/webui)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f4c7172f63f904a0c61ba3/JIeyxhTm9_PNzXyU7wQVd.png)
```
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer,AutoModelForCausalLM,MistralForCausalLM
import torch
model_id=Mistral-7B-Instruct-v0.4
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",)
chat_template="{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
def chat_format(conversation:list):
system_prompt = "You are a helpful, respectful and honest assistant.Help humman as much as you can."
id = tokenizer.apply_chat_template(conversation,chat_template=chat_template,tokenize=False)
return id
user_chat=[{"role":"user","content":"你好,最近在干嘛呢"}]
text = chat_format(user_chat).rstrip("</s>")
def predict(content_prompt):
inputs = tokenizer(content_prompt,return_tensors="pt",add_special_tokens=True)
input_ids = inputs["input_ids"].to("cuda:0")
# print(f"input length:{len(input_ids[0])}")
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
#generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=2048,
top_p=0.9,
num_beams=1,
do_sample=True,
repetition_penalty=1.0,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s,skip_special_tokens=True)
output1 = output.split("[/INST]")[-1].strip()
# print(output1)
return output1
predict(text)
output:你好!作为一个大型语言模型,我一直在学习和提高自己的能力。最近,我一直在努力学习新知识、改进算法,以便更好地回答用户的问题并提供帮助。同时,我也会定期接受人工智能专家的指导和评估,以确保我的表现不断提升。希望这些信息对你有所帮助!
```
## vllm server
```
llama2-chat-template.jinja file is chat-template above
model_path=Mistral-7B-Instruct-V0.4
python -m vllm.entrypoints.openai.api_server --model=$model_path \
--trust-remote-code --host 0.0.0.0 --port 7777 \
--gpu-memory-utilization 0.8 \
--max-model-len 8192 --chat-template llama2-chat-template.jinja \
--tensor-parallel-size 1 --served-model-name chatbot
```
```
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:7777/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
call_args = {
'temperature': 0.7,
'top_p': 0.9,
'top_k': 40,
'max_tokens': 2048, # output-len
'presence_penalty': 1.0,
'frequency_penalty': 0.0,
"repetition_penalty":1.0,
"stop":["</s>"],
}
chat_response = client.chat.completions.create(
model="llama",
messages=[
{"role": "user", "content": "你好"},
],
extra_body=call_args
)
print("Chat response:", chat_response)
```