MoritzLaurer HF staff commited on
Commit
ade8c81
1 Parent(s): 5cab41d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md CHANGED
@@ -1,3 +1,137 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vi
18
+ - zh
19
  license: mit
20
+ tags:
21
+ - zero-shot-classification
22
+ - text-classification
23
+ - nli
24
+ - pytorch
25
+ metrics:
26
+ - accuracy
27
+ datasets:
28
+ - multi_nli
29
+ - xnli
30
+ pipeline_tag: zero-shot-classification
31
+ widget:
32
+ - text: "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
33
+ candidate_labels: "politics, economy, entertainment, environment"
34
  ---
35
+
36
+
37
+ ---
38
+ # Multilingual XLM-V-base-mnli-xnli
39
+ ## Model description
40
+ This multilingual model can perform natural language inference (NLI) on 116 languages and is therefore also
41
+ suitable for multilingual zero-shot classification. The underlying XLM-V-base model was created
42
+ by Meta AI and pretrained on the [CC100 multilingual dataset](https://huggingface.co/datasets/cc100).
43
+ It was then fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which contains hypothesis-premise pairs from 15 languages,
44
+ as well as the English [MNLI dataset](https://huggingface.co/datasets/multi_nli).
45
+ XLM-V-base was publish on 23.01.2023 in [this paper](https://arxiv.org/pdf/2301.10472.pdf).
46
+ Its main innovation is a larger vocabulary: previous multilingual models had a vocabulary of 250 000 tokens,
47
+ while XLM-V has 1 million tokens. The improved vocabulary allows for better representations of more languages.
48
+
49
+ [mDeBERTa-v3](https://arxiv.org/pdf/2111.09543.pdf).
50
+
51
+
52
+ ### How to use the model
53
+ #### Simple zero-shot classification pipeline
54
+ ```python
55
+ from transformers import pipeline
56
+ classifier = pipeline("zero-shot-classification", model="MoritzLaurer/xlm-v-base-mnli-xnli")
57
+
58
+ sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
59
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
60
+ output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
61
+ print(output)
62
+ ```
63
+ #### NLI use-case
64
+ ```python
65
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
66
+ import torch
67
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
68
+
69
+ model_name = "MoritzLaurer/xlm-v-base-mnli-xnli"
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
71
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
72
+
73
+ premise = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
74
+ hypothesis = "Emmanuel Macron is the President of France"
75
+
76
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
77
+ output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
78
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
79
+ label_names = ["entailment", "neutral", "contradiction"]
80
+ prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
81
+ print(prediction)
82
+ ```
83
+
84
+ ### Training data
85
+ This model was trained on the XNLI development dataset and the MNLI train dataset.
86
+ The XNLI development set consists of 2490 professionally translated texts from English
87
+ to 14 other languages (37350 texts in total) (see [this paper](https://arxiv.org/pdf/1809.05053.pdf)).
88
+ Note that the XNLI contains a training set of 15 machine translated versions of the MNLI dataset for 15 languages,
89
+ but due to quality issues with these machine translations, this model was only trained on the professional translations
90
+ from the XNLI development set and the original English MNLI training set (392 702 texts).
91
+ Not using machine translated texts can avoid overfitting the model to the 15 languages;
92
+ avoids catastrophic forgetting of the other 85 languages mDeBERTa was pre-trained on;
93
+ and significantly reduces training costs.
94
+
95
+ ### Training procedure
96
+ xlm-v-base-mnli-xnli was trained using the Hugging Face trainer with the following hyperparameters.
97
+ ```
98
+ training_args = TrainingArguments(
99
+ num_train_epochs=3, # total number of training epochs
100
+ learning_rate=2e-05,
101
+ per_device_train_batch_size=32, # batch size per device during training
102
+ per_device_eval_batch_size=120, # batch size for evaluation
103
+ warmup_ratio=0.06, # number of warmup steps for learning rate scheduler
104
+ weight_decay=0.01, # strength of weight decay
105
+ )
106
+ ```
107
+ ### Eval results
108
+ The model was evaluated on the XNLI test set on 15 languages (5010 texts per language, 75150 in total).
109
+ Note that multilingual NLI models are capable of classifying NLI texts without receiving NLI training data
110
+ in the specific language (cross-lingual transfer). This means that the model is also able of doing NLI on
111
+ the other 101~ languages XLM-V was training on, but performance is most likely lower than for those languages available in XNLI.
112
+
113
+ Also note that if other multilingual models on the model hub claim performance of around 90% on languages other than English,
114
+ the authors have most likely made a mistake during testing since non of the latest papers shows a multilingual average performance
115
+ of more than a few points above 80% on XNLI (see [here](https://arxiv.org/pdf/2111.09543.pdf) or [here](https://arxiv.org/pdf/1911.02116.pdf)).
116
+
117
+ average | ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vi | zh
118
+ ---------|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------
119
+ 0.808 | 0.802 | 0.829 | 0.825 | 0.826 | 0.883 | 0.845 | 0.834 | 0.771 | 0.813 | 0.748 | 0.793 | 0.807 | 0.740 | 0.795 | 0.8116
120
+
121
+
122
+ |Datasets|mnli_m|mnli_mm|ar|bg|de|el|en|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
123
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
124
+ |Accuracy|0.852|0.854|0.757|0.808|0.796|0.79|0.856|0.814|0.806|0.751|0.782|0.725|0.757|0.766|0.729|0.784|0.782|
125
+ |Speed (text/sec)|2098.0|2170.0|3501.0|3324.0|3438.0|3174.0|3713.0|3500.0|3129.0|3042.0|3419.0|3468.0|3782.0|3772.0|3099.0|3117.0|4217.0|
126
+
127
+
128
+ ## Limitations and bias
129
+ Please consult the original XLM-V paper and literature on different NLI datasets for potential biases.
130
+
131
+ ## Citation
132
+ If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k.
133
+
134
+ ## Ideas for cooperation or questions?
135
+ If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/)
136
+
137
+