File size: 15,186 Bytes
1cc16b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
"""
Mortality Graph Construction for THRML Integration
=================================================
This module converts Morbid AI's MortalityRecord data structure into
THRML-compatible probabilistic graphical models.
"""
import jax
import jax.numpy as jnp
import networkx as nx
from typing import List, Dict, Tuple, Optional
import pandas as pd
from dataclasses import dataclass
from thrml.pgm import CategoricalNode, SpinNode
from thrml.block_management import Block
from thrml.factor import AbstractFactor
@dataclass
class MortalityRecord:
"""Morbid AI mortality record structure"""
country: str
year: int
sex: int # 1=male, 2=female, 3=both
age: int
deathRate: float # m(x)
deathProbability: float # q(x)
survivors: float # l(x)
deaths: float # d(x)
lifeExpectancy: float # e(x)
class MortalityGraphBuilder:
"""
Builds THRML-compatible probabilistic graphical models from mortality data.
This class creates heterogeneous graphs that capture complex interactions
between demographic factors (age, country, sex, year) and mortality outcomes.
"""
def __init__(self, mortality_data: List[MortalityRecord]):
"""
Initialize with mortality data.
Args:
mortality_data: List of MortalityRecord objects
"""
self.mortality_data = mortality_data
self.df = pd.DataFrame([
{
'country': record.country,
'year': record.year,
'sex': record.sex,
'age': record.age,
'death_rate': record.deathRate,
'death_probability': record.deathProbability,
'survivors': record.survivors,
'deaths': record.deaths,
'life_expectancy': record.lifeExpectancy
} for record in mortality_data
])
# Extract unique values for graph construction
self.countries = sorted(self.df['country'].unique())
self.years = sorted(self.df['year'].unique())
self.sexes = sorted(self.df['sex'].unique())
self.ages = sorted(self.df['age'].unique())
# Create node mappings
self._create_node_mappings()
def _create_node_mappings(self):
"""Create mappings from data values to graph nodes."""
self.country_nodes = {country: CategoricalNode() for country in self.countries}
self.year_nodes = {year: CategoricalNode() for year in self.years}
self.sex_nodes = {sex: SpinNode() for sex in self.sexes} # Binary-like representation
self.age_nodes = {age: CategoricalNode() for age in self.ages}
# Create outcome nodes for mortality metrics
self.life_expectancy_nodes = {}
self.death_probability_nodes = {}
# Discretize life expectancy and death probability for categorical representation
self.life_exp_bins = jnp.linspace(0, 100, 21) # 20 bins for life expectancy
self.death_prob_bins = jnp.linspace(0, 1, 11) # 10 bins for death probability
for i in range(len(self.life_exp_bins) - 1):
self.life_expectancy_nodes[i] = CategoricalNode()
for i in range(len(self.death_prob_bins) - 1):
self.death_probability_nodes[i] = CategoricalNode()
def build_mortality_graph(self) -> nx.Graph:
"""
Build NetworkX graph representing mortality factor interactions.
Returns:
NetworkX graph with nodes representing demographic factors
and edges representing interactions.
"""
G = nx.Graph()
# Add nodes with attributes
for country, node in self.country_nodes.items():
G.add_node(f"country_{country}", type="country", value=country, thrml_node=node)
for year, node in self.year_nodes.items():
G.add_node(f"year_{year}", type="year", value=year, thrml_node=node)
for sex, node in self.sex_nodes.items():
G.add_node(f"sex_{sex}", type="sex", value=sex, thrml_node=node)
for age, node in self.age_nodes.items():
G.add_node(f"age_{age}", type="age", value=age, thrml_node=node)
# Add outcome nodes
for bin_idx, node in self.life_expectancy_nodes.items():
G.add_node(f"life_exp_{bin_idx}", type="life_expectancy",
bin_idx=bin_idx, thrml_node=node)
for bin_idx, node in self.death_probability_nodes.items():
G.add_node(f"death_prob_{bin_idx}", type="death_probability",
bin_idx=bin_idx, thrml_node=node)
# Add edges representing factor interactions
self._add_demographic_interactions(G)
self._add_outcome_interactions(G)
return G
def _add_demographic_interactions(self, G: nx.Graph):
"""Add edges between demographic factor nodes."""
# Age-Sex interactions (biological mortality differences)
for age in self.ages:
for sex in self.sexes:
G.add_edge(f"age_{age}", f"sex_{sex}", interaction_type="age_sex")
# Country-Year interactions (temporal mortality trends by country)
for country in self.countries:
for year in self.years:
G.add_edge(f"country_{country}", f"year_{year}",
interaction_type="country_year")
# Age-Country interactions (demographic mortality patterns)
for age in self.ages[::5]: # Sample every 5th age to reduce complexity
for country in self.countries:
G.add_edge(f"age_{age}", f"country_{country}",
interaction_type="age_country")
def _add_outcome_interactions(self, G: nx.Graph):
"""Add edges between demographic factors and mortality outcomes."""
# Connect age groups to life expectancy bins
for age in self.ages[::10]: # Sample to reduce complexity
for le_bin in range(len(self.life_expectancy_nodes)):
G.add_edge(f"age_{age}", f"life_exp_{le_bin}",
interaction_type="age_life_expectancy")
# Connect demographic factors to death probability
for country in self.countries:
for dp_bin in range(len(self.death_probability_nodes)):
G.add_edge(f"country_{country}", f"death_prob_{dp_bin}",
interaction_type="country_death_probability")
def create_sampling_blocks(self, strategy: str = "two_color") -> List[Block]:
"""
Create sampling blocks for THRML block Gibbs sampling.
Args:
strategy: Blocking strategy ("two_color", "demographic", "outcome")
Returns:
List of Block objects for THRML sampling
"""
all_nodes = []
# Collect all THRML nodes
all_nodes.extend(list(self.country_nodes.values()))
all_nodes.extend(list(self.year_nodes.values()))
all_nodes.extend(list(self.sex_nodes.values()))
all_nodes.extend(list(self.age_nodes.values()))
all_nodes.extend(list(self.life_expectancy_nodes.values()))
all_nodes.extend(list(self.death_probability_nodes.values()))
if strategy == "two_color":
# Simple two-color blocking with homogeneous node types
categorical_nodes = (list(self.country_nodes.values()) +
list(self.year_nodes.values()) +
list(self.age_nodes.values()) +
list(self.life_expectancy_nodes.values()) +
list(self.death_probability_nodes.values()))
spin_nodes = list(self.sex_nodes.values())
# Create separate blocks for different node types
if categorical_nodes and spin_nodes:
return [Block(categorical_nodes), Block(spin_nodes)]
elif categorical_nodes:
return [Block(categorical_nodes[::2]), Block(categorical_nodes[1::2])]
else:
return [Block(spin_nodes)]
elif strategy == "demographic":
# Block by demographic factor types - separate by node type
categorical_demographic = (list(self.country_nodes.values()) +
list(self.year_nodes.values()) +
list(self.age_nodes.values()))
spin_demographic = list(self.sex_nodes.values())
outcome_nodes = (list(self.life_expectancy_nodes.values()) +
list(self.death_probability_nodes.values()))
blocks = []
if categorical_demographic:
blocks.append(Block(categorical_demographic))
if spin_demographic:
blocks.append(Block(spin_demographic))
if outcome_nodes:
blocks.append(Block(outcome_nodes))
return blocks
elif strategy == "outcome":
# Block by outcome type - keep node types separate
life_exp_nodes = list(self.life_expectancy_nodes.values())
death_prob_nodes = list(self.death_probability_nodes.values())
categorical_demo = (list(self.country_nodes.values()) +
list(self.year_nodes.values()) +
list(self.age_nodes.values()))
spin_demo = list(self.sex_nodes.values())
blocks = []
if life_exp_nodes:
blocks.append(Block(life_exp_nodes))
if death_prob_nodes:
blocks.append(Block(death_prob_nodes))
if categorical_demo:
blocks.append(Block(categorical_demo))
if spin_demo:
blocks.append(Block(spin_demo))
return blocks
else:
raise ValueError(f"Unknown blocking strategy: {strategy}")
def create_interaction_factors(self) -> List[Dict]:
"""
Create interaction factors for the energy-based model.
Returns:
List of simplified factor objects representing
pairwise and higher-order interactions
"""
factors = []
# Age-Sex interaction factors
for age in self.ages[::10]: # Sample to manage complexity
for sex in self.sexes:
age_node = self.age_nodes[age]
sex_node = self.sex_nodes[sex]
# Create interaction matrix based on mortality data
interaction_strength = self._compute_age_sex_interaction(age, sex)
# For now, create a simplified factor representation
# In a full implementation, would create proper THRML factors
factors.append({
'nodes': [age_node, sex_node],
'strength': interaction_strength,
'type': 'age_sex'
})
# Country-Year interaction factors
for country in self.countries:
for year in self.years[::2]: # Sample years
country_node = self.country_nodes[country]
year_node = self.year_nodes[year]
interaction_strength = self._compute_country_year_interaction(country, year)
# Simplified factor representation
factors.append({
'nodes': [country_node, year_node],
'strength': interaction_strength,
'type': 'country_year'
})
return factors
def _compute_age_sex_interaction(self, age: int, sex: int) -> jnp.ndarray:
"""Compute interaction strength between age and sex from data."""
# Filter data for this age-sex combination
subset = self.df[(self.df['age'] == age) & (self.df['sex'] == sex)]
if len(subset) == 0:
# Default weak interaction if no data
return jnp.array([[0.1, 0.0], [0.0, 0.1]])
# Use death rate as proxy for interaction strength
avg_death_rate = subset['death_rate'].mean()
# Create 2x2 interaction matrix
# Higher death rates = stronger interaction
strength = min(avg_death_rate * 10, 1.0) # Cap at 1.0
return jnp.array([[strength, -strength/2], [-strength/2, strength]])
def _compute_country_year_interaction(self, country: str, year: int) -> jnp.ndarray:
"""Compute interaction strength between country and year."""
subset = self.df[(self.df['country'] == country) & (self.df['year'] == year)]
if len(subset) == 0:
return jnp.array([[0.1, 0.0], [0.0, 0.1]])
# Use life expectancy variance as interaction strength
life_exp_var = subset['life_expectancy'].var()
strength = min(life_exp_var / 100, 1.0) # Normalize and cap
return jnp.array([[strength, -strength/3], [-strength/3, strength]])
def get_mortality_prediction_nodes(self,
age: int,
country: str,
sex: int) -> Dict[str, any]:
"""
Get the relevant nodes for mortality prediction given demographics.
Args:
age: Age value
country: Country name
sex: Sex value (1=male, 2=female, 3=both)
Returns:
Dictionary mapping node types to THRML nodes
"""
return {
'age_node': self.age_nodes.get(age),
'country_node': self.country_nodes.get(country),
'sex_node': self.sex_nodes.get(sex),
'life_expectancy_nodes': self.life_expectancy_nodes,
'death_probability_nodes': self.death_probability_nodes
}
def discretize_life_expectancy(self, life_exp: float) -> int:
"""Convert continuous life expectancy to discrete bin index."""
return int(jnp.digitize(life_exp, self.life_exp_bins)) - 1
def discretize_death_probability(self, death_prob: float) -> int:
"""Convert continuous death probability to discrete bin index."""
return int(jnp.digitize(death_prob, self.death_prob_bins)) - 1
def continuous_from_bin(self, bin_idx: int, bin_type: str) -> float:
"""Convert bin index back to continuous value (bin center)."""
if bin_type == "life_expectancy":
if 0 <= bin_idx < len(self.life_exp_bins) - 1:
return (self.life_exp_bins[bin_idx] + self.life_exp_bins[bin_idx + 1]) / 2
elif bin_type == "death_probability":
if 0 <= bin_idx < len(self.death_prob_bins) - 1:
return (self.death_prob_bins[bin_idx] + self.death_prob_bins[bin_idx + 1]) / 2
return 0.0 |