File size: 1,678 Bytes
903d487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from PIL.Image import Image
from onediffx.deep_cache import StableDiffusionXLPipeline
from pipelines.models import TextToImageRequest
from torch import Generator
import oneflow as flow
from onediff.infer_compiler import oneflow_compile
from onediffx import compile_pipe, save_pipe, load_pipe
from diffusers import DDIMScheduler
from loss import SchedulerWrapper

def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
    if not pipeline:
        pipeline = StableDiffusionXLPipeline.from_pretrained(
            "./models/newdream-sdxl-20",
            torch_dtype=torch.float16,
            local_files_only=True,
        )
    pipeline.to("cuda")
    pipeline.scheduler = SchedulerWrapper(DDIMScheduler.from_config(pipeline.scheduler.config))
    pipeline = compile_pipe(pipeline)
    pipeline.unet = oneflow_compile(pipeline.unet)
    
    load_pipe(pipeline,dir="cached_pipe")
    for _ in range(4):
        deepcache_output = pipeline(prompt="make submissions great again", cache_interval=1, cache_layer_id=1, cache_block_id=0, num_inference_steps=20)
    pipeline.scheduler.prepare_loss()
    return pipeline

def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image:
    if request.seed is None:
        generator = None
    else:
        generator = Generator(pipeline.device).manual_seed(request.seed)

    return pipeline(
        prompt=request.prompt,
        negative_prompt=request.negative_prompt,
        width=request.width,
        height=request.height,
        generator=generator,
        num_inference_steps=1,
        cache_interval=1,
        cache_layer_id=1,
        cache_block_id=0,
    ).images[0]