File size: 17,568 Bytes
464344f 5e2329c 71fdb1b 464344f 71fdb1b 464344f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
from typing import Any
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainStateEma
from utils.checkpoint import Checkpoint
from utils.stable_vae import StableVAE
from utils.sharding import create_sharding, all_gather
from utils.datasets import get_dataset
from model import DiT
from helper_eval import eval_model
from helper_inference import do_inference
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('load_dir', './checkpoints/810001/810001.tmp', 'Logging dir (if not None, save params).')
#flags.DEFINE_string('load_dir', './sharpness/final_810001.tmp', 'Logging dir (if not None, save params).)
flags.DEFINE_string('save_dir', './checkpoints/', 'Logging dir (if not None, save params).')
flags.DEFINE_string('fid_stats', None, 'FID stats file.')
flags.DEFINE_integer('seed', 10, 'Random seed.') # Must be the same across all processes.
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 1000000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 10000, 'Save interval.')
flags.DEFINE_integer('batch_size', 256, 'Mini batch size.')
flags.DEFINE_integer('max_steps', int(500_000), 'Number of training steps.')
flags.DEFINE_integer('debug_overfit', 0, 'Debug overfitting.')
flags.DEFINE_string('mode', 'train', 'train or inference.')
model_config = ml_collections.ConfigDict({
'lr': 0.0001,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.1,
'use_cosine': 0,
'warmup': 0,
'dropout': 0.0,
'hidden_size': 64, # change this!
'patch_size': 8, # change this!
'depth': 2, # change this!
'num_heads': 2, # change this!
'mlp_ratio': 1, # change this!
'class_dropout_prob': 0.1,
'num_classes': 1000,
'denoise_timesteps': 128,
'cfg_scale': 4.0,
'target_update_rate': 0.999,
'use_ema': 0,
'use_stable_vae': 1,
'sharding': 'dp', # dp or fsdp.
't_sampling': 'discrete-dt',
'dt_sampling': 'uniform',
'bootstrap_cfg': 0,
'bootstrap_every': 8, # Make sure its a divisor of batch size.
'bootstrap_ema': 1,
'bootstrap_dt_bias': 0,
'train_type': 'shortcut' # or naive.
})
#config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)
##############################################
## Training Code.
##############################################
def main(_):
np.random.seed(FLAGS.seed)
print("Using devices", jax.local_devices())
device_count = len(jax.local_devices())
global_device_count = jax.device_count()
print("Device count", device_count)
print("Global device count", global_device_count)
local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
print("Global Batch: ", FLAGS.batch_size)
print("Node Batch: ", local_batch_size)
print("Device Batch:", local_batch_size // device_count)
# Create wandb logger
if jax.process_index() == 0 and FLAGS.mode == 'train':
setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)
dataset = get_dataset(FLAGS.dataset_name, local_batch_size, True, FLAGS.debug_overfit)
dataset_valid = get_dataset(FLAGS.dataset_name, local_batch_size, False, FLAGS.debug_overfit)
example_obs, example_labels = next(dataset)
example_obs = example_obs[:1]
example_obs_shape = example_obs.shape
if FLAGS.model.use_stable_vae:
vae = StableVAE.create()
if 'latent' in FLAGS.dataset_name:
example_obs = example_obs[:, :, :, example_obs.shape[-1] // 2:]
example_obs_shape = example_obs.shape
else:
example_obs = vae.encode(jax.random.PRNGKey(0), example_obs)
example_obs_shape = example_obs.shape
vae_rng = jax.random.PRNGKey(42)
vae_encode = jax.jit(vae.encode)
vae_decode = jax.jit(vae.decode)
if FLAGS.fid_stats is not None:
from utils.fid import get_fid_network, fid_from_stats
get_fid_activations = get_fid_network()
truth_fid_stats = np.load(FLAGS.fid_stats)
else:
get_fid_activations = None
truth_fid_stats = None
###################################
# Creating Model and put on devices.
###################################
FLAGS.model.image_channels = example_obs_shape[-1]
FLAGS.model.image_size = example_obs_shape[1]
dit_args = {
'patch_size': FLAGS.model['patch_size'],
'hidden_size': FLAGS.model['hidden_size'],
'depth': FLAGS.model['depth'],
'num_heads': FLAGS.model['num_heads'],
'mlp_ratio': FLAGS.model['mlp_ratio'],
'out_channels': example_obs_shape[-1],
'class_dropout_prob': FLAGS.model['class_dropout_prob'],
'num_classes': FLAGS.model['num_classes'],
'dropout': FLAGS.model['dropout'],
'ignore_dt': False if (FLAGS.model['train_type'] in ('shortcut', 'livereflow')) else True,
}
model_def = DiT(**dit_args)
# tabulate_fn = flax.linen.tabulate(model_def, jax.random.PRNGKey(0))
tabulate_fn = flax.linen.tabulate(model_def, rngs={"params": jax.random.PRNGKey(0), "label":jax.random.PRNGKey(0)})
print(tabulate_fn(example_obs, jnp.zeros((1,)), jnp.zeros((1,)), jnp.zeros((1,), dtype=jnp.int32)))
if FLAGS.model.use_cosine:
lr_schedule = optax.warmup_cosine_decay_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'], FLAGS.max_steps)
elif FLAGS.model.warmup > 0:
lr_schedule = optax.linear_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'])
else:
lr_schedule = lambda x: FLAGS.model['lr']
adam = optax.adamw(learning_rate=lr_schedule, b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'], weight_decay=FLAGS.model['weight_decay'])
tx = optax.chain(adam)
def log_param_shapes(params, label=""):
flat = flax.traverse_util.flatten_dict(params)
squeezed_flat = {k: jnp.squeeze(v, axis = 0) for k, v in flat.items() if v.shape[0] == 1}
print(f"\n{label} parameter shapes:")
for k, v in flat.items():
print(f"{k}: {v.shape}")
return flax.traverse_util.unflatten_dict(squeezed_flat)
def init(rng):
param_key, dropout_key, dropout2_key = jax.random.split(rng, 3)
example_t = jnp.zeros((1,))
example_dt = jnp.zeros((1,))
example_label = jnp.zeros((1,), dtype=jnp.int32)
example_obs = jnp.zeros(example_obs_shape)
model_rngs = {'params': param_key, 'label_dropout': dropout_key, 'dropout': dropout2_key}
params = model_def.init(model_rngs, example_obs, example_t, example_dt, example_label)['params']
opt_state = tx.init(params)
ts = TrainStateEma.create(model_def, params, rng=rng, tx=tx, opt_state=opt_state)
if FLAGS.load_dir is not None:
cp = Checkpoint(FLAGS.load_dir)
train_state_load = cp.load_as_dict()["train_state"]
log_param_shapes(ts.params)
flat = log_param_shapes(train_state_load["params"])
flat_ema = log_param_shapes(train_state_load["params_ema"])
flat_mu = log_param_shapes(train_state_load["opt_state"][0][0].mu)
flat_nu = log_param_shapes(train_state_load["opt_state"][0][0].nu)
from optax import ScaleByAdamState
opt_state = train_state_load["opt_state"]
new_state = ScaleByAdamState(
opt_state[0][0].count,
mu=flat_mu,
nu=flat_nu
)
opt_state = list(opt_state)
opt_state[0] = list(opt_state[0])
opt_state[0][0] = new_state
opt_state[0] = tuple(opt_state[0])
opt_state = tuple(opt_state)
train_state_load = TrainStateEma.create(model_def, params = flat, rng = rng, tx = tx, opt_state=opt_state)
#Need to replace EMA because we have a separate ema
log_param_shapes(train_state_load.params)
train_state_load.replace(params_ema = flat_ema)
start_step = train_state_load.step
ts = train_state_load
return ts
rng = jax.random.PRNGKey(FLAGS.seed)
train_state_shape = jax.eval_shape(init, rng)
data_sharding, train_state_sharding, no_shard, shard_data, global_to_local = create_sharding(FLAGS.model.sharding, train_state_shape)
train_state = jax.jit(init, out_shardings=train_state_sharding)(rng)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
jax.debug.visualize_array_sharding(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
jax.experimental.multihost_utils.assert_equal(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
start_step = 1
if False:#FLAGS.load_dir is not None:
cp = Checkpoint(FLAGS.load_dir)
replace_dict = cp.load_as_dict()['train_state']
del replace_dict['opt_state'] # Debug
train_state = train_state.replace(**replace_dict)
if FLAGS.wandb.run_id != "None": # If we are continuing a run.
start_step = train_state.step
train_state = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
print("Loaded model with step", train_state.step)
train_state = train_state.replace(step=0)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
del cp
if FLAGS.model.train_type == 'progressive' or FLAGS.model.train_type == 'consistency-distillation':
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
else:
train_state_teacher = None
visualize_labels = example_labels
visualize_labels = shard_data(visualize_labels)
visualize_labels = jax.experimental.multihost_utils.process_allgather(visualize_labels)
imagenet_labels = open('data/imagenet_labels.txt').read().splitlines()
###################################
# Update Function
###################################
@partial(jax.jit, out_shardings=(train_state_sharding, no_shard))
def update(train_state, train_state_teacher, images, labels, force_t=-1, force_dt=-1):
new_rng, targets_key, dropout_key, perm_key = jax.random.split(train_state.rng, 4)
info = {}
id_perm = jax.random.permutation(perm_key, images.shape[0])
images = images[id_perm]
labels = labels[id_perm]
images = jax.lax.with_sharding_constraint(images, data_sharding)
labels = jax.lax.with_sharding_constraint(labels, data_sharding)
if FLAGS.model['cfg_scale'] == 0: # For unconditional generation.
labels = jnp.ones(labels.shape[0], dtype=jnp.int32) * FLAGS.model['num_classes']
if FLAGS.model['train_type'] == 'naive':
from baselines.targets_naive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'shortcut':
from targets_shortcut import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'progressive':
from baselines.targets_progressive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency-distillation':
from baselines.targets_consistency_distillation import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency':
from baselines.targets_consistency_training import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'livereflow':
from baselines.targets_livereflow import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
def loss_fn(grad_params):
v_prime, logvars, activations = train_state.call_model(x_t, t, dt_base, labels, train=True, rngs={'dropout': dropout_key}, params=grad_params, return_activations=True)
mse_v = jnp.mean((v_prime - v_t) ** 2, axis=(1, 2, 3))
loss = jnp.mean(mse_v)
info = {
'loss': loss,
'v_magnitude_prime': jnp.sqrt(jnp.mean(jnp.square(v_prime))),
**{'activations/' + k : jnp.sqrt(jnp.mean(jnp.square(v))) for k, v in activations.items()},
}
if FLAGS.model['train_type'] == 'shortcut' or FLAGS.model['train_type'] == 'livereflow':
bootstrap_size = FLAGS.batch_size // FLAGS.model['bootstrap_every']
info['loss_flow'] = jnp.mean(mse_v[bootstrap_size:])
info['loss_bootstrap'] = jnp.mean(mse_v[:bootstrap_size])
return loss, info
grads, new_info = jax.grad(loss_fn, has_aux=True)(train_state.params)
info = {**info, **new_info}
updates, new_opt_state = train_state.tx.update(grads, train_state.opt_state, train_state.params)
new_params = optax.apply_updates(train_state.params, updates)
info['grad_norm'] = optax.global_norm(grads)
info['update_norm'] = optax.global_norm(updates)
info['param_norm'] = optax.global_norm(new_params)
info['lr'] = lr_schedule(train_state.step)
train_state = train_state.replace(rng=new_rng, step=train_state.step + 1, params=new_params, opt_state=new_opt_state)
train_state = train_state.update_ema(FLAGS.model['target_update_rate'])
return train_state, info
if FLAGS.mode != 'train':
do_inference(FLAGS, train_state, None, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
return
###################################
# Train Loop
###################################
for i in tqdm.tqdm(range(1 + start_step, FLAGS.max_steps + 1 + start_step),
smoothing=0.1,
dynamic_ncols=True):
# Sample data.
if not FLAGS.debug_overfit or i == 1:
batch_images, batch_labels = shard_data(*next(dataset))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
vae_rng, vae_key = jax.random.split(vae_rng)
batch_images = vae_encode(vae_key, batch_images)
# Train update.
train_state, update_info = update(train_state, train_state_teacher, batch_images, batch_labels)
if i % FLAGS.log_interval == 0 or i == 1:
update_info = jax.device_get(update_info)
update_info = jax.tree.map(lambda x: np.array(x), update_info)
update_info = jax.tree.map(lambda x: x.mean(), update_info)
train_metrics = {f'training/{k}': v for k, v in update_info.items()}
valid_images, valid_labels = shard_data(*next(dataset_valid))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
valid_images = vae_encode(vae_rng, valid_images)
_, valid_update_info = update(train_state, train_state_teacher, valid_images, valid_labels)
valid_update_info = jax.device_get(valid_update_info)
valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
train_metrics['training/loss_valid'] = valid_update_info['loss']
if jax.process_index() == 0:
wandb.log(train_metrics, step=i)
if FLAGS.model['train_type'] == 'progressive':
num_sections = np.log2(FLAGS.model['denoise_timesteps']).astype(jnp.int32)
if i % (FLAGS.max_steps // num_sections) == 0:
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
if i % FLAGS.eval_interval == 0:
eval_model(FLAGS, train_state, train_state_teacher, i, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
if i % FLAGS.save_interval == 0 and FLAGS.save_dir is not None:
train_state_gather = jax.experimental.multihost_utils.process_allgather(train_state)
#This all gather might be parto f the reason the shape is odd
if jax.process_index() == 0:
cp = Checkpoint(FLAGS.save_dir+str(train_state_gather.step+1), parallel=False)
cp.train_state = train_state_gather
cp.save()
del cp
del train_state_gather
if __name__ == '__main__':
app.run(main)
|