|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class CosmicConfig: |
|
"""Configuration class for CosmicFish.""" |
|
|
|
def __init__(self, |
|
vocab_size=50257, |
|
block_size=512, |
|
n_layer=10, |
|
n_head=16, |
|
n_embd=640, |
|
bias=True, |
|
dropout=0.0, |
|
n_query_groups=4, |
|
eps=1e-6, |
|
use_rotary=True, |
|
use_swiglu=True, |
|
use_qk_norm=False, |
|
use_gqa=True): |
|
self.vocab_size = vocab_size |
|
self.block_size = block_size |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_embd = n_embd |
|
self.bias = bias |
|
self.dropout = dropout |
|
self.eps = eps |
|
self.use_rotary = use_rotary |
|
self.use_swiglu = use_swiglu |
|
self.use_qk_norm = use_qk_norm |
|
self.use_gqa = use_gqa |
|
self.n_query_groups = n_query_groups if use_gqa else n_head |
|
|
|
assert n_head % self.n_query_groups == 0, "n_head must be divisible by n_query_groups" |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
"""Root Mean Square Normalization""" |
|
|
|
def __init__(self, dim, eps=1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) |
|
return self.weight * (x / rms) |
|
|
|
|
|
def precompute_freqs_cis(dim, end, theta=10000.0): |
|
"""Precompute the frequency tensor for complex exponentials (cis)""" |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs) |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return freqs_cis |
|
|
|
|
|
def apply_rotary_emb(xq, xk, freqs_cis): |
|
"""Apply rotary embeddings to input tensors""" |
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
|
|
seq_len = xq_.size(2) |
|
if freqs_cis.size(0) < seq_len: |
|
raise ValueError(f"freqs_cis has only {freqs_cis.size(0)} values but sequence length is {seq_len}") |
|
|
|
freqs_cis_seq = freqs_cis[:seq_len] |
|
xq_out = torch.view_as_real(xq_ * freqs_cis_seq.unsqueeze(0)).flatten(3) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis_seq.unsqueeze(0)).flatten(3) |
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
class GroupedQueryAttention(nn.Module): |
|
"""Grouped Query Attention (GQA) implementation""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
head_dim = config.n_embd // config.n_head |
|
self.head_dim = head_dim |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.n_query_groups = config.n_query_groups |
|
|
|
self.kv_heads = config.n_head // config.n_query_groups if config.use_gqa else config.n_head |
|
qkv_proj_size = (config.n_head + 2 * self.kv_heads) * head_dim |
|
|
|
self.c_attn = nn.Linear(config.n_embd, qkv_proj_size, bias=config.bias) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') |
|
if not self.flash: |
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
|
|
self.qk_norm = getattr(config, 'use_qk_norm', False) |
|
if self.qk_norm: |
|
self.q_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6)) |
|
self.k_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6)) |
|
|
|
def forward(self, x, freqs_cis=None): |
|
B, T, C = x.size() |
|
qkv = self.c_attn(x) |
|
head_dim = C // self.n_head |
|
|
|
q_size = self.n_head * head_dim |
|
k_size = self.kv_heads * head_dim |
|
v_size = self.kv_heads * head_dim |
|
|
|
q, k, v = qkv.split([q_size, k_size, v_size], dim=2) |
|
|
|
q = q.view(B, T, self.n_head, head_dim).transpose(1, 2) |
|
k = k.view(B, T, self.kv_heads, head_dim).transpose(1, 2) |
|
v = v.view(B, T, self.kv_heads, head_dim).transpose(1, 2) |
|
|
|
|
|
if self.kv_heads < self.n_head: |
|
repeats = self.n_head // self.kv_heads |
|
k = k.repeat_interleave(repeats, dim=1) |
|
v = v.repeat_interleave(repeats, dim=1) |
|
|
|
|
|
if freqs_cis is not None: |
|
q, k = apply_rotary_emb(q, k, freqs_cis) |
|
|
|
|
|
if self.qk_norm: |
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
|
|
if self.flash: |
|
y = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True |
|
) |
|
else: |
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
y = att @ v |
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = self.c_proj(y) |
|
return y |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer block""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = RMSNorm(config.n_embd, eps=config.eps) |
|
self.ln_2 = RMSNorm(config.n_embd, eps=config.eps) |
|
self.attn = GroupedQueryAttention(config) |
|
|
|
|
|
if config.use_swiglu: |
|
|
|
self.mlp = nn.ModuleDict(dict( |
|
gate=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), |
|
up=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), |
|
down=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), |
|
act=nn.SiLU(), |
|
)) |
|
m = self.mlp |
|
self.mlpf = lambda x: m.down(m.act(m.up(x)) * m.gate(x)) |
|
else: |
|
|
|
self.mlp = nn.ModuleDict(dict( |
|
c_fc=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), |
|
c_proj=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), |
|
act=nn.GELU(), |
|
)) |
|
m = self.mlp |
|
self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x))) |
|
|
|
def forward(self, x, freqs_cis=None): |
|
x = x + self.attn(self.ln_1(x), freqs_cis) |
|
x = x + self.mlpf(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class CosmicFish(nn.Module): |
|
""" |
|
CosmicFish model for inference only. |
|
Features: Rotary Positional Embeddings, Grouped-Query Attention, SwiGLU, RMSNorm |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte=nn.Embedding(config.vocab_size, config.n_embd), |
|
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f=RMSNorm(config.n_embd, eps=config.eps), |
|
)) |
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
if config.use_rotary: |
|
head_dim = config.n_embd // config.n_head |
|
self.freqs_cis = precompute_freqs_cis(head_dim, config.block_size) |
|
else: |
|
self.freqs_cis = None |
|
self.transformer.wpe = nn.Embedding(config.block_size, config.n_embd) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
"""Return the number of parameters in the model.""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding and hasattr(self.transformer, 'wpe'): |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
def forward(self, idx, targets=None): |
|
"""Forward pass through the model.""" |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
|
|
|
|
if self.config.use_rotary: |
|
x = tok_emb |
|
freqs_cis = self.freqs_cis.to(device) if self.freqs_cis is not None else None |
|
else: |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = tok_emb + pos_emb |
|
freqs_cis = None |
|
|
|
|
|
for block in self.transformer.h: |
|
x = block(x, freqs_cis) |
|
|
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
if targets is not None: |
|
logits = self.lm_head(x) |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
loss = None |
|
|
|
return logits, loss |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
""" |
|
Generate text by sampling from the model, token by token. |
|
""" |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] |
|
|
|
|
|
logits, _ = self(idx_cond) |
|
logits = logits[:, -1, :] / temperature |
|
|
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, top_k) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|