File size: 2,117 Bytes
7ed6595 977a3d0 7ed6595 b1b2128 559ee40 7ed6595 8e3c407 7ed6595 79ec751 7ed6595 977a3d0 559ee40 977a3d0 7ed6595 79ec751 7ed6595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-train
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-train
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2367
- Rouge1: 43.9525
- Rouge2: 22.3403
- Rougel: 38.7683
- Rougelsum: 39.2056
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.6e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 3.3237 | 1.0 | 40 | 2.6713 | 34.4731 | 14.9731 | 29.4814 | 29.9747 |
| 2.7401 | 2.0 | 80 | 2.4318 | 38.1153 | 18.3492 | 33.4476 | 33.9181 |
| 2.5882 | 3.0 | 120 | 2.3339 | 41.2707 | 19.8571 | 36.2685 | 36.6119 |
| 2.4264 | 4.0 | 160 | 2.2878 | 42.184 | 20.9666 | 37.3488 | 37.6172 |
| 2.3915 | 5.0 | 200 | 2.2605 | 43.4928 | 21.7195 | 38.4917 | 38.8471 |
| 2.3599 | 6.0 | 240 | 2.2462 | 44.2876 | 22.28 | 38.9234 | 39.3673 |
| 2.3073 | 7.0 | 280 | 2.2398 | 43.9822 | 22.3746 | 38.7625 | 39.0964 |
| 2.3026 | 8.0 | 320 | 2.2367 | 43.9525 | 22.3403 | 38.7683 | 39.2056 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|