MiraW's picture
End of training
b7a7c25 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.1

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0 1.0 113 nan 0.1
0.0 2.0 226 nan 0.1
0.0 3.0 339 nan 0.1
0.0 4.0 452 nan 0.1
0.0 5.0 565 nan 0.1
0.0 6.0 678 nan 0.1
0.0 7.0 791 nan 0.1
0.0 8.0 904 nan 0.1
0.0 9.0 1017 nan 0.1
0.0 10.0 1130 nan 0.1
0.0 11.0 1243 nan 0.1
0.0 12.0 1356 nan 0.1
0.0 13.0 1469 nan 0.1
0.0 14.0 1582 nan 0.1
0.0 15.0 1695 nan 0.1
0.0 16.0 1808 nan 0.1
0.0 17.0 1921 nan 0.1
0.0 18.0 2034 nan 0.1
0.0 19.0 2147 nan 0.1
0.0 20.0 2260 nan 0.1

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1