File size: 27,235 Bytes
cfde609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from typing import Optional, Union, Tuple, Dict, List, Iterable
from transformers.image_transforms import to_channel_dimension_format, PaddingMode
from transformers.image_utils import ChannelDimension, to_numpy_array, make_list_of_images, get_image_size, infer_channel_dimension_format
from transformers.utils import TensorType
from PIL import Image
import numpy as np
try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC

import torch
from transformers.utils import (
    TensorType,
    is_torch_device,
    is_torch_dtype,
    requires_backends,
)

from torchvision.transforms import Compose, ToTensor, Normalize, ToPILImage, RandomResizedCrop, Resize

try:
    from torchvision.transforms import InterpolationMode
    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC

from PIL import Image
import torch
import numpy as np
import os
processor_for_vllm = int(os.getenv("PROCESSOR_FOR_VLLM", 0))

def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        # Calculate the downscaled size to keep the aspect ratio
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)

        # Calculate effective and wasted resolutions
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit 

def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches

def image_size_to_num_patches(image_size, grid_pinpoints, patch_size):
    if not isinstance(grid_pinpoints, list):
        raise TypeError("grid_pinpoints should be a list of tuples or lists")

    # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
    if not isinstance(image_size, (list, tuple)):
        if not isinstance(image_size, (torch.Tensor, np.ndarray)):
            raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
        image_size = image_size.tolist()

    best_resolution = select_best_resolution(image_size, grid_pinpoints)
    width, height = best_resolution
    num_patches = 0
    # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            num_patches += 1
    # add the base patch
    num_patches += 1
    return num_patches

def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (`tuple`):
            The size of the input image in the format (width, height).
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if not isinstance(grid_pinpoints, list):
        raise TypeError("grid_pinpoints should be a list of tuples or lists")

    # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
    if not isinstance(image_size, (list, tuple)):
        if not isinstance(image_size, (torch.Tensor, np.ndarray)):
            raise TypeError(
                f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
            )
        image_size = image_size.tolist()

    width, height = select_best_resolution(image_size, grid_pinpoints)
    return width // patch_size, height // patch_size


# custom transform
class KeeyRatioResize(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image):
        return keepratio_resize(image, self.size)

def keepratio_resize(image, size, return_scale=False):
    # Resize the image to keep the ratio
    w, h = image.size
    resized_w, resized_h = size
    if w / h > resized_w / resized_h:
        # resize and pad to the right and left
        new_h = int(resized_w*h/w)
        resized_image = image.resize((resized_w, new_h), Image.BICUBIC)

        image = Image.new('RGB', (resized_w, resized_h), (0, 0, 0))
        pad_h = (resized_h - new_h) // 2
        image.paste(resized_image, (0, pad_h))
        scale = resized_w / w
        #image.paste(resized_image, (0, 0))
    else:
        # resize and pad to the top and bottom
        new_w = int(resized_h*w/h)
        resized_image = image.resize((new_w, resized_h), Image.BICUBIC)
        image = Image.new('RGB', (resized_w, resized_h), (0, 0, 0))
        #image.paste(resized_image, (0, 0))
        pad_w = (resized_w - new_w) // 2
        image.paste(resized_image, (pad_w, 0))
        scale = resized_h / h
    if return_scale:
        return image, scale
    return image

def _convert_image_to_rgb(image):
    return image.convert("RGB")

def _transform(img_h, img_w, image_mean=(0.48145466, 0.4578275, 0.40821073), image_std=(0.26862954, 0.26130258, 0.27577711)):
    return Compose([
        # ToPILImage(),
        #RandomResizedCrop((img_h, img_w), scale=(0.5, 1.0), interpolation=BICUBIC),
        #Resize((img_h, img_w), interpolation=BICUBIC),
        _convert_image_to_rgb,
        ToTensor(),
        Normalize(image_mean, image_std),
    ])


def get_hw_multiple_of(image_size, multiple, max_size=None):
    w, h = image_size
    new_w = w if w % multiple == 0 else w + (multiple - w % multiple)
    new_h = h if h % multiple == 0 else h + (multiple - h % multiple)
    if max_size is not None:
        assert isinstance(max_size, (list, tuple)) and len(max_size) == 2
        max_w, max_h = max_size
        assert max_w % multiple == 0 and max_h % multiple == 0
        if new_w > max_w or new_h > max_h:
            # ratio = min(max_w / new_w, max_h / new_h)
            # new_w = int(new_w * ratio)
            # new_h = int(new_h * ratio)
            new_w = min((new_w * max_w) // new_w, (new_w * max_h) // new_h)
            new_h = min((new_h * max_w) // new_w, (new_h * max_h) // new_h)

            new_w = new_w if new_w % multiple == 0 else new_w + (multiple - new_w % multiple)
            new_h = new_h if new_h % multiple == 0 else new_h + (multiple - new_h % multiple)
        assert new_w % multiple == 0 and new_h % multiple == 0
        assert new_w <= max_w and new_h <= max_h
    return new_w, new_h

def resize_multiple_of(image, multiple, max_size=None):
    """
    Resize the image to the multiple of a number.

    Args:
        image (PIL.Image.Image): The input image.
        multiple (int): The number to which the image should be resized.

    Returns:
        PIL.Image.Image: The resized image.
    """
    width, height = image.size
    new_width, new_height = get_hw_multiple_of((width, height), multiple, max_size)
    return image.resize((new_width, new_height), Image.BICUBIC)



class CustomBatchFeature(BatchFeature):
    def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
        """
        Convert the inner content to tensors.

        Args:
            tensor_type (`str` or [`~utils.TensorType`], *optional*):
                The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
                `None`, no modification is done.
        """
        if tensor_type is None:
            return self

        is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)

        # Do the tensor conversion in batch
        for key, value in self.items():
            if key == "pixel_values":
                for i, image in enumerate(value):
                    if not is_tensor(image):
                        tensor = as_tensor(image)
                        self[key][i] = tensor
                continue
            try:
                if not is_tensor(value):
                    tensor = as_tensor(value)

                    self[key] = tensor
            except:  # noqa E722
                if key == "overflowing_values":
                    raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
                raise ValueError(
                    "Unable to create tensor, you should probably activate padding "
                    "with 'padding=True' to have batched tensors with the same length."
                )

        return self

    def to(self, *args, **kwargs) -> "BatchFeature":
        """
        Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
        different `dtypes` and sending the `BatchFeature` to a different `device`.

        Args:
            args (`Tuple`):
                Will be passed to the `to(...)` function of the tensors.
            kwargs (`Dict`, *optional*):
                Will be passed to the `to(...)` function of the tensors.

        Returns:
            [`BatchFeature`]: The same instance after modification.
        """
        requires_backends(self, ["torch"])
        import torch  # noqa

        new_data = {}
        device = kwargs.get("device")
        # Check if the args are a device or a dtype
        if device is None and len(args) > 0:
            # device should be always the first argument
            arg = args[0]
            if is_torch_dtype(arg):
                # The first argument is a dtype
                pass
            elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
                device = arg
            else:
                # it's something else
                raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
        # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
        for k, v in self.items():
            if k == "pixel_values":
                new_data[k] = [v[i].to(*args, **kwargs) for i in range(len(v))]
                continue
            # check if v is a floating point
            if torch.is_floating_point(v):
                # cast and send to device
                new_data[k] = v.to(*args, **kwargs)
            elif device is not None:
                new_data[k] = v.to(device=device)
            else:
                new_data[k] = v
        self.data = new_data
        return self


def as_tensor(value):
    if isinstance(value, (list, tuple)) and len(value) > 0:
        if isinstance(value[0], np.ndarray):
            value = np.array(value)
        elif (
            isinstance(value[0], (list, tuple))
            and len(value[0]) > 0
            and isinstance(value[0][0], np.ndarray)
        ):
            value = np.array(value)
    if isinstance(value, np.ndarray):
        return torch.from_numpy(value)
    else:
        return torch.tensor(value)

class ImageProcessor(BaseImageProcessor):
    model_input_names = ["pixel_values"]

    def __init__(
        self,
        size: Optional[Union[int, Tuple[int, int], Dict[str, int]]] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        process_image_mode: Optional[str] = 'resize',
        patch_size: Optional[int] = 14,
        image_grid_pinpoints: List = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.size = size # (width, height)
        self.image_mean = image_mean
        self.image_std = image_std
        self.process_image_mode = process_image_mode
        image_grid_pinpoints = (
            image_grid_pinpoints
            if image_grid_pinpoints is not None
            else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
        )
        self.image_grid_pinpoints = image_grid_pinpoints
        self.patch_size = patch_size

    def preprocess(self,
                    images,
                    return_tensors: Optional[Union[str, TensorType]] = None,
                    data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
                    input_data_format: Optional[Union[str, ChannelDimension]] = None,
                    **kwargs,
                    ):
        if self.process_image_mode == 'resize':
            return self.resize_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
        elif self.process_image_mode == 'anyres':
            if processor_for_vllm == 1:
                return self.anyres_for_vllm_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
            return self.anyres_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
        elif self.process_image_mode == 'keepratio_resize':
            return self.keepratio_resize_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
        elif self.process_image_mode == 'dynamic_res':
            return self.dynamic_res_preprocess(images, return_tensors, data_format, input_data_format, **kwargs)
        else:
            raise ValueError(f"Invalid process_image_mode: {self.process_image_mode}")
    
    def resize_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
        images = make_list_of_images(images)
        all_images = []
        for image in images:
            resized_image = image.resize(self.size, Image.BICUBIC)
            transform_img = _transform(self.size[1], self.size[0], self.image_mean, self.image_std)(resized_image)
            all_images.append(to_numpy_array(transform_img))

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
            for image in all_images
        ]

        data = {"pixel_values": images}
        return CustomBatchFeature(data=data, tensor_type=return_tensors)

    def keepratio_resize_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
        images = make_list_of_images(images)
        all_images = []
        for image in images:
            resized_image = keepratio_resize(image, self.size)
            transform_img = _transform(self.size[1], self.size[0], self.image_mean, self.image_std)(resized_image)
            all_images.append(to_numpy_array(transform_img))

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
            for image in all_images
        ]

        data = {"pixel_values": images}
        return CustomBatchFeature(data=data, tensor_type=return_tensors)

    def dynamic_res_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs):
        images = make_list_of_images(images)
        all_images = []
        image_sizes = []
        for image in images:
            ori_w, ori_h = image.size
            image_sizes.append([ori_h, ori_w])
            resized_image = resize_multiple_of(image, self.patch_size, max_size=self.size)
            resized_w, resized_h = resized_image.size
            transform_img = _transform(resized_h, resized_w, self.image_mean, self.image_std)(resized_image)
            all_images.append(to_numpy_array(transform_img))

        images = [
            as_tensor(to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format))
            for image in all_images
        ]

        # data = {"pixel_values": images, "image_sizes": as_tensor(image_sizes)}
        # return data
        data = {"pixel_values": images, "image_sizes": image_sizes}
        #return BatchFeature(data=data, data_format=data_format, tensor_type=return_tensors)
        
        return CustomBatchFeature(data=data, tensor_type=return_tensors)

    def get_image_patches(
        self,
        data: Image,
        image_grid_pinpoints,
    ):
        if not isinstance(image_grid_pinpoints, list):
            raise TypeError("grid_pinpoints must be a list of possible resolutions.")


        best_resolution = select_best_resolution(data.size, image_grid_pinpoints)

        resized_data, scale = keepratio_resize(data, best_resolution, return_scale=True)
        resized_data = divide_to_patches(resized_data, self.size[0])
        ori_data = data.resize(self.size, Image.BICUBIC)
        data = [ori_data] + resized_data
        return data
    
    def pad(
        self,
        image: np.ndarray,
        padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
        mode: PaddingMode = PaddingMode.CONSTANT,
        constant_values: Union[float, Iterable[float]] = 0.0,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
        dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
        as input.

        Args:
            image (`np.ndarray`):
                The image to pad.
            padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
                Padding to apply to the edges of the height, width axes. Can be one of three formats:
                - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
                - `((before, after),)` yields same before and after pad for height and width.
                - `(pad,)` or int is a shortcut for before = after = pad width for all axes.
            mode (`PaddingMode`):
                The padding mode to use. Can be one of:
                    - `"constant"`: pads with a constant value.
                    - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
                    vector along each axis.
                    - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
                    - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
            constant_values (`float` or `Iterable[float]`, *optional*):
                The value to use for the padding if `mode` is `"constant"`.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use the inferred format of the input image.

        Returns:
            `np.ndarray`: The padded image.

        """

        # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
        if isinstance(padding, int) or len(padding) != 4:
            return pad(image, padding, mode, constant_values, data_format, input_data_format)

        if input_data_format is None:
            input_data_format = infer_channel_dimension_format(image)
        if mode == PaddingMode.CONSTANT:
            image = np.pad(image, padding, mode="constant", constant_values=constant_values)
        elif mode == PaddingMode.REFLECT:
            image = np.pad(image, padding, mode="reflect")
        elif mode == PaddingMode.REPLICATE:
            image = np.pad(image, padding, mode="edge")
        elif mode == PaddingMode.SYMMETRIC:
            image = np.pad(image, padding, mode="symmetric")
        else:
            raise ValueError(f"Invalid padding mode: {mode}")
        image = (
            to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
        )
        return image

    def _pad_for_batching(
        self,
        pixel_values: List[np.ndarray],
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.

        Args:
            pixel_values (`List[np.ndarray]`):
                An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use the inferred format of the input image.

        Returns:
            List[`np.ndarray`]: The padded images.
        """
        max_patch = max(len(x) for x in pixel_values)
        pixel_values = [
            self.pad(
                image,
                padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)),
                data_format=data_format,
                input_data_format=input_data_format,
            )
            for image in pixel_values
        ]

        return pixel_values

    def anyres_for_vllm_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_pad: Optional[bool] = None, **kwargs):
        
        images = make_list_of_images(images)
        new_images = []
        image_sizes = []

        for image in images:
            ori_w, ori_h = image.size
            image_sizes.append([ori_h, ori_w])
            image_patches = self.get_image_patches(
                image,
                self.image_grid_pinpoints
            )
            all_images = []
            for image in image_patches:
                transform_img = _transform(self.size[0], self.size[1], self.image_mean, self.image_std)(image)
                img_array = to_numpy_array(transform_img)
                img_array = to_channel_dimension_format(img_array, data_format, input_channel_dim=input_data_format)
                all_images.append(img_array)
                #new_images.append(img_array)
            pixel_values = np.array(all_images)
            new_images.append(pixel_values)
        

        new_images = self._pad_for_batching(new_images)

        data = {"pixel_values": new_images, "image_sizes": image_sizes}
        return BatchFeature(data=data, tensor_type=return_tensors)

    
    def anyres_preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_pad: Optional[bool] = None, **kwargs):
        
        images = make_list_of_images(images)
        new_images = []
        image_sizes = []

        for image in images:
            ori_w, ori_h = image.size
            image_sizes.append([ori_h, ori_w])
            image_patches = self.get_image_patches(
                image,
                self.image_grid_pinpoints
            )
            #all_images = []
            for image in image_patches:
                transform_img = _transform(self.size[0], self.size[1], self.image_mean, self.image_std)(image)
                img_array = to_numpy_array(transform_img)
                img_array = to_channel_dimension_format(img_array, data_format, input_channel_dim=input_data_format)
                #all_images.append(img_array)
                new_images.append(img_array)
            #pixel_values = np.array(all_images)
            #new_images.append(pixel_values)
        
        # if do_pad:
        #     new_images = self._pad_for_batching(new_images)

        data = {"pixel_values": new_images, "image_sizes": image_sizes}
        return CustomBatchFeature(data=data, tensor_type=return_tensors)