Text Generation
Transformers
Safetensors
English
qwen2
conversational
text-generation-inference
Inference Endpoints
MiniPLM-Qwen-200M / README.md
nielsr's picture
nielsr HF staff
Add link to paper
e41e649 verified
|
raw
history blame
1.8 kB
---
library_name: transformers
license: apache-2.0
datasets:
- monology/pile-uncopyrighted
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# MinPLM-QWen-200M
[paper]() | [code](https://github.com/thu-coai/MiniPLM)
**MiniPLM-QWen-200M** is a 200M model with QWen achitecture pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial QWen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
</p>
## Evaluation
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
</p>
## Baseline Models
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-200M)
+ [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-200M)
## Citation
```bibtex
@misc{gu2024miniplmknowledgedistillationpretraining,
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
year={2024},
eprint={2410.17215},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.17215},
}
```