File size: 15,606 Bytes
e6925e6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7de8ea7040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7de8ea48c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690748711443245522, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/+ITbPqBVnLyf3BQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4iW8P/6IPz+9vqw/Jm48PwAtY79QTdA/BYR9vpL2Cz9RvLS+0mnHvx2xBr+unJ2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDz4hNs+oFWcvJ/cFD83prI7sCtgutT9KDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42874885 -0.0190838   0.5814914 ]\n [ 0.42874885 -0.0190838   0.5814914 ]\n [ 0.42874885 -0.0190838   0.5814914 ]\n [ 0.42874885 -0.0190838   0.5814914 ]]", "desired_goal": "[[ 1.4699061   0.7481841   1.3495709 ]\n [ 0.73605573 -0.8874054   1.6273594 ]\n [-0.24757393  0.5467311  -0.35299924]\n [-1.5579169  -0.52614003 -1.231344  ]]", "observation": "[[ 0.42874885 -0.0190838   0.5814914   0.00545194 -0.00085514  0.01031442]\n [ 0.42874885 -0.0190838   0.5814914   0.00545194 -0.00085514  0.01031442]\n [ 0.42874885 -0.0190838   0.5814914   0.00545194 -0.00085514  0.01031442]\n [ 0.42874885 -0.0190838   0.5814914   0.00545194 -0.00085514  0.01031442]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVnzLvUE6ej3h/F09KFYGPHE/Gj0w4Is9vLm6PHaUlb0RkRg+IW7VPXzWrD1iZDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.09935825  0.06109071  0.05419624]\n [ 0.00819925  0.03765816  0.0682987 ]\n [ 0.02279364 -0.07303707  0.14899088]\n [ 0.10421396  0.08439347  0.17616418]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8tO4N78h9r+UhpRSlIwBbJRLMowBdJRHQKf4yvRJEpl1fZQoaAZoCWgPQwgpmDEFa7wHwJSGlFKUaBVLMmgWR0Cn+HttQ9A5dX2UKGgGaAloD0MI+P4G7dWnFMCUhpRSlGgVSzJoFkdAp/gr9GZuynV9lChoBmgJaA9DCKck63B0VQ7AlIaUUpRoFUsyaBZHQKf34mMwUQF1fZQoaAZoCWgPQwgrGJXUCagUwJSGlFKUaBVLMmgWR0Cn+c6+vhZRdX2UKGgGaAloD0MIeZPfopNlCcCUhpRSlGgVSzJoFkdAp/l/IGQjlnV9lChoBmgJaA9DCLWn5JzYww/AlIaUUpRoFUsyaBZHQKf5L3pOerd1fZQoaAZoCWgPQwiXqrTFNb4NwJSGlFKUaBVLMmgWR0Cn+OXizcASdX2UKGgGaAloD0MIvOtsyD+zA8CUhpRSlGgVSzJoFkdAp/ri2jO9nXV9lChoBmgJaA9DCKAy/n3GBQvAlIaUUpRoFUsyaBZHQKf6k4CIUJx1fZQoaAZoCWgPQwhzafzCK2kEwJSGlFKUaBVLMmgWR0Cn+kPfCQ9zdX2UKGgGaAloD0MIblLRWPtrEcCUhpRSlGgVSzJoFkdAp/n6PKdQPHV9lChoBmgJaA9DCFT9SufDM/6/lIaUUpRoFUsyaBZHQKf7/va11GN1fZQoaAZoCWgPQwjmdcQhG6gHwJSGlFKUaBVLMmgWR0Cn+6/1HvtudX2UKGgGaAloD0MIxjNo6J/gEsCUhpRSlGgVSzJoFkdAp/tgnjQzDXV9lChoBmgJaA9DCCyDaoMTkRnAlIaUUpRoFUsyaBZHQKf7Fx3mmtR1fZQoaAZoCWgPQwhJnYAmwuYKwJSGlFKUaBVLMmgWR0Cn/QCXY150dX2UKGgGaAloD0MIW9B7YwhgD8CUhpRSlGgVSzJoFkdAp/yxChN/OXV9lChoBmgJaA9DCMEeEynNhgzAlIaUUpRoFUsyaBZHQKf8YVLzwtt1fZQoaAZoCWgPQwhD4h5LHyoQwJSGlFKUaBVLMmgWR0Cn/BfXPJJYdX2UKGgGaAloD0MIkIZT5uZ7D8CUhpRSlGgVSzJoFkdAp/4JeAuqWHV9lChoBmgJaA9DCNZyZyYYjvu/lIaUUpRoFUsyaBZHQKf9ucmShal1fZQoaAZoCWgPQwhG09nJ4GgUwJSGlFKUaBVLMmgWR0Cn/WpBomG/dX2UKGgGaAloD0MIUaIlj6dl/L+UhpRSlGgVSzJoFkdAp/0gtDlYEHV9lChoBmgJaA9DCEZ7vJAOvxzAlIaUUpRoFUsyaBZHQKf/KinpB5Z1fZQoaAZoCWgPQwiMoDGTqNcGwJSGlFKUaBVLMmgWR0Cn/tp+tr9EdX2UKGgGaAloD0MIJO8cylBVAsCUhpRSlGgVSzJoFkdAp/6K7TUiIXV9lChoBmgJaA9DCLHbZ5WZ8gfAlIaUUpRoFUsyaBZHQKf+QXO4XoF1fZQoaAZoCWgPQwgKoBhZMjcawJSGlFKUaBVLMmgWR0CoADZHVf/ndX2UKGgGaAloD0MI8iIT8GsUEcCUhpRSlGgVSzJoFkdAp//mjua4MHV9lChoBmgJaA9DCJZCIJc40gPAlIaUUpRoFUsyaBZHQKf/lseGO+91fZQoaAZoCWgPQwgtB3qobQP5v5SGlFKUaBVLMmgWR0Cn/01CgK4QdX2UKGgGaAloD0MI3Zcz2xWKGcCUhpRSlGgVSzJoFkdAqAFZ2MbWE3V9lChoBmgJaA9DCMUe2scK/gDAlIaUUpRoFUsyaBZHQKgBChf0Eox1fZQoaAZoCWgPQwg/xAYLJykTwJSGlFKUaBVLMmgWR0CoALrgn+hodX2UKGgGaAloD0MItvRoqifTFcCUhpRSlGgVSzJoFkdAqABxZ6lchXV9lChoBmgJaA9DCLMkQE0tuxXAlIaUUpRoFUsyaBZHQKgCcH2RJVd1fZQoaAZoCWgPQwj6muWy0ZkGwJSGlFKUaBVLMmgWR0CoAiD/MnqndX2UKGgGaAloD0MIpUkp6PaSGcCUhpRSlGgVSzJoFkdAqAHRUo8ZDXV9lChoBmgJaA9DCJAxdy0hHwfAlIaUUpRoFUsyaBZHQKgBh8kUsWh1fZQoaAZoCWgPQwiu78NBQiQWwJSGlFKUaBVLMmgWR0CoA3hHskY5dX2UKGgGaAloD0MIs193uvNkDcCUhpRSlGgVSzJoFkdAqAMo0waisXV9lChoBmgJaA9DCNxLGqN1VA3AlIaUUpRoFUsyaBZHQKgC2SaEzwd1fZQoaAZoCWgPQwhwIvq19SMawJSGlFKUaBVLMmgWR0CoAo/JV81GdX2UKGgGaAloD0MIgNWRI51B+r+UhpRSlGgVSzJoFkdAqASubI91U3V9lChoBmgJaA9DCD1+b9OffRfAlIaUUpRoFUsyaBZHQKgEXqoqCpZ1fZQoaAZoCWgPQwgPmIdM+aAVwJSGlFKUaBVLMmgWR0CoBA8Rcu8LdX2UKGgGaAloD0MIDveRW5OOBMCUhpRSlGgVSzJoFkdAqAPGelKsdXV9lChoBmgJaA9DCLJkjuVdlQ3AlIaUUpRoFUsyaBZHQKgFsa7VawF1fZQoaAZoCWgPQwjjx5i7llD/v5SGlFKUaBVLMmgWR0CoBWHivPkadX2UKGgGaAloD0MIa2PshJcQE8CUhpRSlGgVSzJoFkdAqAUSQT238XV9lChoBmgJaA9DCHgKuVLPwhbAlIaUUpRoFUsyaBZHQKgEyM2FWXF1fZQoaAZoCWgPQwgCK4cW2e4EwJSGlFKUaBVLMmgWR0CoBsU65oXbdX2UKGgGaAloD0MIYAMixJWzFMCUhpRSlGgVSzJoFkdAqAZ2W0JF9nV9lChoBmgJaA9DCHCX/brT3QnAlIaUUpRoFUsyaBZHQKgGJ3zMA3l1fZQoaAZoCWgPQwgMB0KygMkQwJSGlFKUaBVLMmgWR0CoBd5XdTHbdX2UKGgGaAloD0MIRNsxdVcmFMCUhpRSlGgVSzJoFkdAqAfMoa1kUnV9lChoBmgJaA9DCFgbYye8ZA/AlIaUUpRoFUsyaBZHQKgHfNwBHTZ1fZQoaAZoCWgPQwh5IojzcBIVwJSGlFKUaBVLMmgWR0CoBy06xPfsdX2UKGgGaAloD0MI965BX3qrFcCUhpRSlGgVSzJoFkdAqAbjgdfb9XV9lChoBmgJaA9DCKcC7nn+1AbAlIaUUpRoFUsyaBZHQKgI1LAYYSB1fZQoaAZoCWgPQwjE0sCPavgLwJSGlFKUaBVLMmgWR0CoCIT8P4EfdX2UKGgGaAloD0MIMiJRaFk3/L+UhpRSlGgVSzJoFkdAqAg1poK2KHV9lChoBmgJaA9DCN/98V610gXAlIaUUpRoFUsyaBZHQKgH7DvVmSR1fZQoaAZoCWgPQwiMo3ITtdQIwJSGlFKUaBVLMmgWR0CoCgZ4GD+SdX2UKGgGaAloD0MIFLGIYYcRHcCUhpRSlGgVSzJoFkdAqAm232EkB3V9lChoBmgJaA9DCNUgzO1ebgjAlIaUUpRoFUsyaBZHQKgJaEEC/491fZQoaAZoCWgPQwjl0viFV5IRwJSGlFKUaBVLMmgWR0CoCR6unuRcdX2UKGgGaAloD0MIu2HboswmAsCUhpRSlGgVSzJoFkdAqAs8mhM8HXV9lChoBmgJaA9DCPN1Gf7Tjfe/lIaUUpRoFUsyaBZHQKgK7Ot4iX91fZQoaAZoCWgPQwgcRdYaSm0UwJSGlFKUaBVLMmgWR0CoCp0+LWI5dX2UKGgGaAloD0MIEoQroFAPEcCUhpRSlGgVSzJoFkdAqApUETxoZnV9lChoBmgJaA9DCAAd5ssLMArAlIaUUpRoFUsyaBZHQKgMZqB3A211fZQoaAZoCWgPQwiY273cJ4cOwJSGlFKUaBVLMmgWR0CoDBcJlar4dX2UKGgGaAloD0MIdJmaBG/oF8CUhpRSlGgVSzJoFkdAqAvHai9Iw3V9lChoBmgJaA9DCNOGw9LAHxPAlIaUUpRoFUsyaBZHQKgLfg2Ifr91fZQoaAZoCWgPQwhr8/+qI8cOwJSGlFKUaBVLMmgWR0CoDXpGWldkdX2UKGgGaAloD0MIEi9P54ryAMCUhpRSlGgVSzJoFkdAqA0qwY+B6XV9lChoBmgJaA9DCNmwprIoDBbAlIaUUpRoFUsyaBZHQKgM20elsP91fZQoaAZoCWgPQwg+zcmLTKAZwJSGlFKUaBVLMmgWR0CoDJG5MDfWdX2UKGgGaAloD0MIwyy0c5pF/b+UhpRSlGgVSzJoFkdAqA6JKHwgDHV9lChoBmgJaA9DCMBBe/XxsA/AlIaUUpRoFUsyaBZHQKgOOYbbUPR1fZQoaAZoCWgPQwi/R/31ClsXwJSGlFKUaBVLMmgWR0CoDenzg/C7dX2UKGgGaAloD0MIX0VGByRBA8CUhpRSlGgVSzJoFkdAqA2gXwb2lHV9lChoBmgJaA9DCNQq+kMzj/y/lIaUUpRoFUsyaBZHQKgPpANXo1V1fZQoaAZoCWgPQwj/eRowSBoLwJSGlFKUaBVLMmgWR0CoD1Rc3VCpdX2UKGgGaAloD0MIBWnGoumcE8CUhpRSlGgVSzJoFkdAqA8ExGlQ/HV9lChoBmgJaA9DCLwH6L6ceRrAlIaUUpRoFUsyaBZHQKgOu0j1PFh1fZQoaAZoCWgPQwiiz0cZcYEQwJSGlFKUaBVLMmgWR0CoEKFKCg9NdX2UKGgGaAloD0MIumkzTkP0FMCUhpRSlGgVSzJoFkdAqBBRiqhlDnV9lChoBmgJaA9DCLVv7q8elxjAlIaUUpRoFUsyaBZHQKgQAfozN2V1fZQoaAZoCWgPQwg8MevFUC4EwJSGlFKUaBVLMmgWR0CoD7hz3h4udX2UKGgGaAloD0MIwlCHFW4ZA8CUhpRSlGgVSzJoFkdAqBH7iXIEKXV9lChoBmgJaA9DCIgrZ++MdgHAlIaUUpRoFUsyaBZHQKgRrQD3dsV1fZQoaAZoCWgPQwhdF35wPtULwJSGlFKUaBVLMmgWR0CoEV1dHDrJdX2UKGgGaAloD0MIscHCSZo/AMCUhpRSlGgVSzJoFkdAqBET06HTJHV9lChoBmgJaA9DCCwoDMo0GhXAlIaUUpRoFUsyaBZHQKgTH+l0o0B1fZQoaAZoCWgPQwimnC/2XuwXwJSGlFKUaBVLMmgWR0CoEtBE8aGYdX2UKGgGaAloD0MIl6lJ8IYEGsCUhpRSlGgVSzJoFkdAqBKAnKGL1nV9lChoBmgJaA9DCDoi36XUZQrAlIaUUpRoFUsyaBZHQKgSNv+fh/B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.17", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}