metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mistral-7b-dpo-full-wo-medication_qa-ep3
results: []
mistral-7b-dpo-full-wo-medication_qa-ep3
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.3800
- Rewards/chosen: -2.4212
- Rewards/rejected: -6.9305
- Rewards/accuracies: 0.8602
- Rewards/margins: 4.5093
- Logps/rejected: -1705.3644
- Logps/chosen: -808.9231
- Logits/rejected: -2.9073
- Logits/chosen: -3.0809
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1684 | 0.6 | 100 | -3.1281 | -2.9646 | -755.8733 | -1595.0167 | 0.3332 | 0.8686 | -1.8907 | 3.9363 | -5.8271 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2