File size: 7,680 Bytes
f1017a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import sys
import boto3
import botocore
import re
import pandas as pd
from nltk.corpus import stopwords
import warnings
warnings.filterwarnings("ignore")
from app.logger import Logger
sys.path.insert(0, os.path.abspath("."))
def read_files(
file_name, sort_by=None, drop_duplicates=None, drop_na=None, encoding=None
):
df = pd.read_csv(
os.path.join("app/constants", file_name), low_memory=False, encoding=encoding
)
if sort_by:
df = df.sort_values(by=[sort_by])
if drop_duplicates:
print("Removing duplicates in ProdName..")
print("df rows before removing duplicates = " + str(df.shape[0]))
df.drop_duplicates(subset=drop_duplicates, keep="first", inplace=True)
print("df rows after removing duplicates = " + str(df.shape[0]))
if drop_na:
print("Removing rows with null values..")
print("df rows before removing nan values = " + str(df.shape[0]))
df = df.dropna(subset=drop_na)
print("df rows after removing nan values = " + str(df.shape[0]))
df = df.reset_index(drop=True)
return df
def check_file_already_downloaded(file_name):
files = os.listdir("app/constants")
if file_name in files:
return True
return False
def download_file_from_s3(
file_name, bucket_name="sku-matching-ai-ml", skip_check=False, file_path=None
):
if check_file_already_downloaded(file_name) and not skip_check:
return file_name
else:
print("STARTING DOWNLOADING: ", file_name)
if not file_path:
file_path = file_name
s3 = boto3.client("s3")
try:
s3.download_file(
Bucket=bucket_name, Key=file_path, Filename=f"app/constants/{file_name}"
)
print("DOWNLOADING FINISHED")
return file_name
# pylint: disable=invalid-name
except botocore.exceptions.ClientError as e:
Logger().exception(
message=f"Unable to download file: {file_name}",
)
return e
def upload_files_to_s3(file_path, upload_path, bucket_name="sku-matching-ai-ml"):
print("STARTING UPLOADING")
s3 = boto3.client("s3")
try:
s3.upload_file(file_path, bucket_name, upload_path)
except botocore.exceptions.ClientError as e:
Logger().exception(
message=f"Unable to uplaod file",
)
return e
def clean(string):
raw_text = re.sub("[^a-zA-Z]+", " ", string)
words = raw_text.lower().split()
stops = set(stopwords.words("english"))
meaningful_words = [
word for word in words if ((not word in stops) and (len(word) >= 3))
]
string = " ".join(meaningful_words)
return string
def close_open_brackets(input_str):
opening_brackets = ["(", "[", "{"]
closing_brackets = [")", "]", "}"]
stack = []
for char in input_str:
if char in opening_brackets:
stack.append(char)
elif char in closing_brackets:
if len(stack) > 0:
opening_bracket = stack.pop()
if opening_brackets.index(opening_bracket) != closing_brackets.index(
char
):
stack.append(opening_bracket)
stack.append(char)
else:
input_str = input_str.replace(char, "")
while len(stack) > 0:
opening_bracket = stack.pop()
closing_bracket = closing_brackets[opening_brackets.index(opening_bracket)]
input_str += closing_bracket
return input_str
def iterative_filtering(
df,
product,
column_name,
skip_clean=False,
consider_starts_with=True,
regex=False,
close_brackets=False,
):
if not skip_clean:
product = clean(product)
else:
product = product.lower()
words = product.split()
new_df = df
index = 0
out_df = new_df
while new_df.shape[0] > 0 and index < len(words):
out_df = new_df
new_df = df_filtering_by_word(
new_df,
words[index],
column_name,
consider_starts_with,
regex,
close_brackets,
)
if new_df.shape[0] > 0:
out_df = new_df
new_df[column_name] = new_df[column_name].str.replace(words[index] + " ", "")
index = index + 1
out_df = out_df.reset_index(drop=True)
return out_df
def df_filtering_by_word(
df, word, column_name, consider_starts_with=True, regex=False, close_brackets=False
):
try:
if close_brackets:
word = close_open_brackets(word)
if consider_starts_with:
filtered_df = df[df[column_name].str.startswith(word)]
if filtered_df.shape[0] == 0:
filtered_df = df[df[column_name].str.contains(word)]
else:
if regex:
filtered_df = df[
df[column_name].str.contains(rf"\b({word})\b", case=False)
]
else:
filtered_df = df[df[column_name].str.contains(word)]
if filtered_df.shape[0] == 0:
filtered_df = df
return filtered_df
except Exception as e:
return df_filtering_by_word(df, clean(word), consider_starts_with, regex)
def remove_files(file_name):
if os.path.exists(f"app/constants/{file_name}"):
os.remove(f"app/constants/{file_name}")
def get_top_mrf_product(mrf_product_attributes_list, dp_product_attributes, sequence_scores, default_attr_key_list):
scores = []
for id, each_mrf_prod_attr in enumerate(mrf_product_attributes_list):
score = sequence_scores[id]
for key in default_attr_key_list:
if key in dp_product_attributes and key in each_mrf_prod_attr:
if pd.notna(dp_product_attributes[key]) and pd.notna(each_mrf_prod_attr[key]):
if str(dp_product_attributes[key]).lower() == str(each_mrf_prod_attr[key]).lower():
score += 5
scores.append(score)
max_index = scores.index(max(scores))
return max_index, max(scores)
# Helper files required for FSA V2
# Preprocessing Function
'''
This Function is using for preprocessing the input product names
'''
def preprocess(text):
text = re.sub(r'&', 'and', text)
text = re.sub(r'[^\w\s]',' ', text)
text = re.sub(' +', ' ', text)
return text.strip().lower()
# Function to preprocess labels from the previous prediction
def label_processing(label):
label = re.sub('__label__', '', label)
label = re.sub('_', ' ', label)
label = re.sub(' +', ' ', label)
return label.strip().lower()
def get_return_labels(label,accuracy,threshold):
if accuracy >= threshold:
return_label = label
return_score = accuracy
label_status = f"Classified - Above threshold {threshold}"
else:
return_label = None
return_score = None
label_status = f"Unclassfied - Below threshold {threshold}"
return return_label,return_score,label_status
#Function to get the product label and accuracy
def get_label_and_accuracy(model,product_name):
prediction = model.predict(product_name)
label = prediction[0][0]
label = label_processing(label)
accuracy = round(prediction[1][0],3)
return label,accuracy
# Function for remove new line in product name
'''
Some products may contain new line characters in middle of product names.
This may occur because of preprocessing. It can lead to result \n in middle of the
product names.
'''
def remove_new_lines(text):
text = re.sub('\n', ' ', text)
return text.strip().lower() |