license: llama2
base_model: migtissera/Tess-70B-v1.6
metrics:
- accuracy
inference: false
model-index:
- name: Covasna-0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 48.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 70.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.64
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.8
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.99
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Covasna-0.1
name: Open LLM Leaderboard
This is a BF16 and pruned version of migtissera/Tess-70B-v1.6 .
migtissera/Tess-70B-v1.6 has 69 billion params and Covasna-0.1 has 41.6 billion (~60.3% param size)
Steps to replicate:
Use laserQlora.ipynb from cognitivecomputations/laserRMT to determine which layers should be eliminated.
Adapt the script for migtissera/Tess-70B-v1.6
by replacing model_name = "mistralai/Mistral-7B-v0.1"
with model_name = "migtissera/Tess-70B-v1.6"
and layer_numbers = list(range(31, -1, -1))
with layer_numbers = list(range(79, -1, -1))
, 79 being the last recurrent layer index Tess-70B-v1.6 has.
Then look for the layer indexes where self_attn.v_proj snr is Infinity and eliminate those layers using mergekit.
Here is the mergekit config:
slices:
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [0, 7]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [8, 9]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [12, 29]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [31, 32]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [33, 45]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [50, 52]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [60, 61]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [67, 68]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [74, 80]
merge_method: passthrough
dtype: bfloat16
GGUF: Covasna-0.1-GGUF
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 50.87 |
AI2 Reasoning Challenge (25-Shot) | 48.81 |
HellaSwag (10-Shot) | 70.07 |
MMLU (5-Shot) | 61.90 |
TruthfulQA (0-shot) | 52.64 |
Winogrande (5-shot) | 70.80 |
GSM8k (5-shot) | 0.99 |