Safetensors
File size: 16,543 Bytes
4527b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
"""
Module: tokenization.py

This module provides a tokenization pipeline for preprocessed single-cell RNA sequencing (scRNA-seq) data.
It converts gene expression data stored in AnnData format into tokenized sequences that can
be used for downstream machine learning tasks, such as masked language modeling or classification.

Main Features:
- Tokenizes gene expression data into integer tokens using a custom GeneTokenizer.
- Supports additional biological annotations (e.g., disease, tissue, cell type, sex).
- Handles both top-k and random gene selection for tokenization.
- Configurable via JSON-based hyperparameters or TokenizationArgs objects.
- Saves tokenized data in Hugging Face Dataset format for efficient processing.

Dependencies:
- anndata, numpy, torch, datasets, tqdm

Usage:
- Run this script as a standalone program with a configuration file specifying the hyperparameters.
- Import the `tokenize` function and call it with the data path, metadata path, and tokenization arguments.
"""

import gc
import os
import json
import random
import shutil
from argparse import ArgumentParser
from typing import Union

import anndata as ad
import numpy as np
import torch
from datasets import Dataset, load_from_disk
from tqdm import tqdm

from teddy.tokenizer.gene_tokenizer import GeneTokenizer
from teddy.tokenizer.tokenization_args import TokenizationArgs

###############################################################################
# Updated Functions
###############################################################################


def _bin_values(vals_list, tokenization_args, no_sorting=False):
    """
    Bins expression values into specified bins, assigning bin 0 to non-expressed genes
    when `include_zero_genes` is True.

    no_sorting=False => "positional chunk" approach for topk-sorted arrays - provided data_processing is expected to be sorted through topk (input expression values).
    no_sorting=True  => simple bucketize approach ignoring the topk order - provided data_processing is not sorted (labels).
    """
    binned_vals = []
    for vals in vals_list:
        if isinstance(vals, np.ndarray):
            vals = torch.tensor(vals)

        vals_to_bin = vals

        # Original binning approach
        if not no_sorting:
            # "positional chunk" approach from the original code
            num_repetitions = max(1, len(vals_to_bin) // tokenization_args.bins)
            bin_pattern = torch.arange(0, tokenization_args.bins).unsqueeze(1).repeat(1, num_repetitions).flatten()

            # slice or pad to match the length of vals_to_bin
            if len(bin_pattern) > len(vals_to_bin):
                bin_pattern = bin_pattern[-len(vals_to_bin) :]
            else:
                extra = len(vals_to_bin) - len(bin_pattern)
                if extra > 0:
                    bin_pattern = torch.cat([torch.zeros(extra), bin_pattern])
            bin_pattern = bin_pattern.flip(0)

            binned_vals.append(bin_pattern)
        else:
            if len(vals_to_bin) > 0:
                bin_edges = torch.linspace(vals_to_bin.min(), vals_to_bin.max(), steps=tokenization_args.bins + 1)
                binned_non_zero_vals = torch.bucketize(vals_to_bin, bin_edges)
                binned_non_zero_vals = torch.clamp(binned_non_zero_vals, min=1)
                binned_tensor = binned_non_zero_vals.float()
                binned_vals.append(binned_tensor)
            else:
                binned_tensor = torch.zeros_like(vals_to_bin, dtype=torch.float)
                binned_vals.append(binned_tensor)
    return binned_vals


def _rank_continuous(vals, tokenization_args):
    """
    Ranks gene expression values in the range [-1, 1].
    """
    if isinstance(vals, np.ndarray):
        vals = torch.tensor(vals)

    if len(vals) > 0:
        ranked_vals = torch.linspace(-1, 1, steps=len(vals)).flip(0)
    else:
        ranked_vals = vals
    return ranked_vals


def _prepare_tokenizer_args(tokenization_args: Union[dict, TokenizationArgs]):
    """
    Prepares and validates tokenization arguments, ensuring reproducibility
    by setting random seeds if specified.
    """
    if isinstance(tokenization_args, dict):
        load_dir = tokenization_args["load_dir"]
        save_dir = tokenization_args["save_dir"]
        token_args_obj = TokenizationArgs(**tokenization_args)
    else:
        # It's already TokenizationArgs
        load_dir = tokenization_args.load_dir
        save_dir = tokenization_args.save_dir
        token_args_obj = tokenization_args

    # If a random seed is specified, set it for reproducibility
    if token_args_obj.gene_seed is not None:
        random.seed(token_args_obj.gene_seed)
        np.random.seed(token_args_obj.gene_seed)
        torch.manual_seed(token_args_obj.gene_seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(token_args_obj.gene_seed)

    return token_args_obj, load_dir, save_dir


def _check_genes_in_tokenizer(data: ad.AnnData, gene_id_column: str, tokenizer: GeneTokenizer):
    """
    Checks if the genes in the dataset are present in the tokenizer's vocabulary.
    """
    if gene_id_column == "index":
        gene_index = data.var.index
    else:
        gene_index = data.var[gene_id_column]

    # Check membership in vocab
    gene_in_vocab = np.where([g in tokenizer.vocab for g in gene_index])[0]
    coding_genes = gene_index[gene_in_vocab]
    ratio = len(gene_in_vocab) / len(data.var)
    if ratio < 0.1:
        raise OSError(
            f"Only {ratio:.2%} of gene IDs found in tokenizer vocab. " "Check gene_id_column or vocab mismatch."
        )
    return gene_in_vocab, coding_genes, ratio


def _build_batch_tensors(X_batch: torch.Tensor, token_array: torch.Tensor, token_args, data=None, obs_indices=None):
    """
    Build topk or random subsets for each row in X_batch (batch_size x num_genes).
    Return gene_list, vals_list, labels_list.
    """
    batch_size = X_batch.shape[0]
    seq_tokens = token_args.max_seq_len - 1 if token_args.add_cls else token_args.max_seq_len

    # If random_genes => pick random subset then topk that subset
    if token_args.random_genes:
        random_indices = torch.stack([torch.randperm(X_batch.shape[1])[:seq_tokens] for _ in range(batch_size)])
        random_vals = torch.gather(X_batch, 1, random_indices)
        top_vals, rel_indices = torch.topk(
            random_vals, k=min(seq_tokens, random_vals.shape[1]), largest=True, sorted=True
        )
        # Convert rel_indices => absolute indices
        top_indices = torch.gather(random_indices, 1, rel_indices)
    else:
        # normal topk
        top_vals, top_indices = torch.topk(X_batch, k=min(seq_tokens, X_batch.shape[1]), largest=True, sorted=True)

    gene_ids = token_array[top_indices]

    # If add_cls => prepend a CLS token
    if token_args.add_cls:
        cls_col = torch.tensor(token_args.cls_token_id).repeat(batch_size, 1)
        gene_ids = torch.cat([cls_col, gene_ids], dim=1)
        ones_col = torch.ones(batch_size, 1, dtype=top_vals.dtype)
        top_vals = torch.cat([ones_col, top_vals], dim=1)

    labels_list = None

    return gene_ids, top_vals, labels_list, None


###############################################################################
# Main tokenize function
###############################################################################
def tokenize(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
    """
    Tokenizes gene expression data stored in AnnData format.

    Args:
        data_path (str): Path to the AnnData file containing preprocessed gene expression data.
        metadata_path (str): Path to the metadata file in JSON format.
        tokenization_args (Union[dict, TokenizationArgs]): Configuration for tokenization.
    """

    token_args, load_dir, save_dir = _prepare_tokenizer_args(tokenization_args)

    # 1) Load GeneTokenizer
    tokenizer = GeneTokenizer.from_pretrained(token_args.tokenizer_name_or_path)
    if token_args.cls_token_id is None:
        token_args.cls_token_id = tokenizer.cls_token_id

    # 2) Load AnnData
    data = ad.read_h5ad(data_path)

    if "processed" not in data.layers:
        raise ValueError(f"Missing 'processed' layer in {data_path}")

    # 3) Genes in vocab
    gene_in_vocab, coding_genes, ratio = _check_genes_in_tokenizer(data, token_args.gene_id_column, tokenizer)
    print(f"{ratio:.2%} of genes found in tokenizer vocab")

    # 5) Build token array for these genes
    token_array = torch.tensor(tokenizer.encode(coding_genes.tolist(), add_special_tokens=False))

    # 6) Convert processed layer to dense
    X_matrix = data.layers["processed"].toarray()

    # 7) Prepare final dictionary => HF Dataset
    all_data = {"gene_ids": [], "values": []}

    BATCH_SIZE = 512
    n_obs = data.shape[0]

    for start_idx in tqdm(range(0, n_obs, BATCH_SIZE), desc="Tokenizing in batches"):
        end_idx = min(start_idx + BATCH_SIZE, n_obs)
        obs_indices = np.arange(start_idx, end_idx)

        X_batch = torch.tensor(X_matrix[obs_indices, :][:, gene_in_vocab], dtype=torch.float)
        gene_ids_batch, vals_batch, labels_batch, decoder_vals_batch = _build_batch_tensors(
            X_batch,
            token_array,
            token_args,
            data=None,
            obs_indices=None,
        )

        final_gene_list = []
        final_vals_list = []
        final_labels_list = []
        if "decoder_values" in data.layers:
            final_decoder_vals_list = []

        # Filter out zero if needed
        # or keep them
        for row_idx in range(len(gene_ids_batch)):
            g_row = gene_ids_batch[row_idx]
            v_row = vals_batch[row_idx]

            if labels_batch is not None:
                lb_row = labels_batch[row_idx]
            else:
                lb_row = None

            if decoder_vals_batch is not None:
                dec_v_row = decoder_vals_batch[row_idx]
            else:
                dec_v_row = None

            if not token_args.include_zero_genes:
                nonzero_mask = v_row != 0
                g_row = g_row[nonzero_mask]
                v_row = v_row[nonzero_mask]
                if lb_row is not None:
                    lb_row = lb_row[nonzero_mask]
                if dec_v_row is not None:
                    dec_v_row = dec_v_row[nonzero_mask]

            final_gene_list.append(g_row)
            final_vals_list.append(v_row)
            final_labels_list.append(lb_row)
            if "decoder_values" in data.layers:
                final_decoder_vals_list.append(dec_v_row)

        # If we do binning or rank => apply them
        if token_args.bins and token_args.continuous_rank:
            raise ValueError("Should not use bins and continuous_rank simultaneously.")

        if token_args.bins:
            # possibly do no_sorting if we are binning "labels"
            # we only do "no_sorting=True" for labels, but let's keep it simple for now
            final_vals_list = _bin_values(final_vals_list, token_args, no_sorting=False)

        elif token_args.continuous_rank:
            for i, vals in enumerate(final_vals_list):
                final_vals_list[i] = _rank_continuous(vals, token_args)

        # Add to all_data
        for row_idx in range(len(final_gene_list)):
            all_data["gene_ids"].append(final_gene_list[row_idx].tolist())
            all_data["values"].append(final_vals_list[row_idx].tolist())

    if token_args.label_column:
        all_data["labels"] = data.obs[token_args.label_column].cat.codes.values.tolist()

    # bio_annotations
    if token_args.bio_annotations:
        with open(token_args.disease_mapping) as f:
            disease_mapping = json.load(f)
        with open(token_args.tissue_mapping) as f:
            tissue_mapping = json.load(f)
        with open(token_args.cell_mapping) as f:
            cell_mapping = json.load(f)
        with open(token_args.sex_mapping) as f:
            sex_mapping = json.load(f)

        if "disease" not in data.obs.columns:
            data.obs["disease"] = "normal"
        if "tissue" not in data.obs.columns:
            data.obs["tissue"] = "cultured cell"
        if "sex" not in data.obs.columns:
            data.obs["sex"] = "unknown"
        if "cell_type" not in data.obs.columns:
            data.obs["cell_type"] = "unknown"

        mapped_diseases = [disease_mapping[k] for k in data.obs["disease"].tolist()]
        mapped_tissues = [tissue_mapping[k] for k in data.obs["tissue"].tolist()]
        mapped_cell_types = [cell_mapping[k] for k in data.obs["cell_type"].tolist()]
        mapped_sexes = [sex_mapping[k] for k in data.obs["sex"].tolist()]

        all_data["disease"] = tokenizer.encode(mapped_diseases, add_special_tokens=False)
        all_data["tissue"] = tokenizer.encode(mapped_tissues, add_special_tokens=False)
        all_data["cell_type"] = tokenizer.encode(mapped_cell_types, add_special_tokens=False)
        all_data["sex"] = tokenizer.encode(mapped_sexes, add_special_tokens=False)

    if token_args.add_disease_annotation:
        # We override "labels" with "disease" tokens
        all_data["labels"] = all_data["disease"]

    del data
    gc.collect()

    dataset = Dataset.from_dict(all_data)
    num_samples = len(dataset)
    if token_args.max_shard_samples:
        num_shards = num_samples // min(token_args.max_shard_samples, num_samples)
    else:
        num_shards = 1

    # Compute the path of data_path relative to load_dir
    relative_data_path = os.path.relpath(data_path, load_dir)
    relative_metadata_path = os.path.relpath(metadata_path, load_dir)

    # Remove the ".h5ad" extension from data_path if desired
    no_extension_data_path = os.path.splitext(relative_data_path)[0]

    # Reconstruct the final paths under save_dir
    save_tokenized_data_path = os.path.join(save_dir, no_extension_data_path)
    save_metadata_path = os.path.join(save_dir, relative_metadata_path)

    dataset.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
    shutil.copy(metadata_path, save_metadata_path)


###############################################################################
# A simple shard function
###############################################################################
def shard_hf_dataset(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
    """
    Shards a Hugging Face Dataset into smaller chunks for efficient storage and processing.
    """
    if isinstance(tokenization_args, dict):
        load_dir = tokenization_args["load_dir"]
        save_dir = tokenization_args["save_dir"]
        token_args_obj = TokenizationArgs(**tokenization_args)
    else:
        load_dir = tokenization_args.load_dir
        save_dir = tokenization_args.save_dir
        token_args_obj = tokenization_args

    all_data = load_from_disk(data_path)
    num_samples = len(all_data)
    if token_args_obj.max_shard_samples:
        num_shards = num_samples // min(token_args_obj.max_shard_samples, num_samples)
    else:
        num_shards = 1

    save_tokenized_data_path = data_path.replace(load_dir, save_dir)
    save_metadata_path = metadata_path.replace(load_dir, save_dir)
    all_data.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
    shutil.copy(metadata_path, save_metadata_path)

###############################################################################
# Main block
###############################################################################
if __name__ == "__main__":
    parser = ArgumentParser(description="Tokenize an AnnData file for downstream ML tasks.")
    parser.add_argument(
        "--data_path",
        type=str,
        required=True,
        help="Path to the .h5ad file containing the preprocessed scRNA-seq data."
    )
    parser.add_argument(
        "--metadata_path",
        type=str,
        required=True,
        help="Path to the JSON file containing metadata."
    )
    parser.add_argument(
        "--config_path",
        type=str,
        required=True,
        help="Path to the JSON file specifying tokenization hyperparameters."
    )

    args = parser.parse_args()

    # Load tokenization arguments from JSON
    with open(args.config_path, "r") as f:
        tokenization_args = json.load(f)

    # Call the tokenize function
    tokenize(
        data_path=args.data_path,
        metadata_path=args.metadata_path,
        tokenization_args=tokenization_args
    )