File size: 16,543 Bytes
4527b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
"""
Module: tokenization.py
This module provides a tokenization pipeline for preprocessed single-cell RNA sequencing (scRNA-seq) data.
It converts gene expression data stored in AnnData format into tokenized sequences that can
be used for downstream machine learning tasks, such as masked language modeling or classification.
Main Features:
- Tokenizes gene expression data into integer tokens using a custom GeneTokenizer.
- Supports additional biological annotations (e.g., disease, tissue, cell type, sex).
- Handles both top-k and random gene selection for tokenization.
- Configurable via JSON-based hyperparameters or TokenizationArgs objects.
- Saves tokenized data in Hugging Face Dataset format for efficient processing.
Dependencies:
- anndata, numpy, torch, datasets, tqdm
Usage:
- Run this script as a standalone program with a configuration file specifying the hyperparameters.
- Import the `tokenize` function and call it with the data path, metadata path, and tokenization arguments.
"""
import gc
import os
import json
import random
import shutil
from argparse import ArgumentParser
from typing import Union
import anndata as ad
import numpy as np
import torch
from datasets import Dataset, load_from_disk
from tqdm import tqdm
from teddy.tokenizer.gene_tokenizer import GeneTokenizer
from teddy.tokenizer.tokenization_args import TokenizationArgs
###############################################################################
# Updated Functions
###############################################################################
def _bin_values(vals_list, tokenization_args, no_sorting=False):
"""
Bins expression values into specified bins, assigning bin 0 to non-expressed genes
when `include_zero_genes` is True.
no_sorting=False => "positional chunk" approach for topk-sorted arrays - provided data_processing is expected to be sorted through topk (input expression values).
no_sorting=True => simple bucketize approach ignoring the topk order - provided data_processing is not sorted (labels).
"""
binned_vals = []
for vals in vals_list:
if isinstance(vals, np.ndarray):
vals = torch.tensor(vals)
vals_to_bin = vals
# Original binning approach
if not no_sorting:
# "positional chunk" approach from the original code
num_repetitions = max(1, len(vals_to_bin) // tokenization_args.bins)
bin_pattern = torch.arange(0, tokenization_args.bins).unsqueeze(1).repeat(1, num_repetitions).flatten()
# slice or pad to match the length of vals_to_bin
if len(bin_pattern) > len(vals_to_bin):
bin_pattern = bin_pattern[-len(vals_to_bin) :]
else:
extra = len(vals_to_bin) - len(bin_pattern)
if extra > 0:
bin_pattern = torch.cat([torch.zeros(extra), bin_pattern])
bin_pattern = bin_pattern.flip(0)
binned_vals.append(bin_pattern)
else:
if len(vals_to_bin) > 0:
bin_edges = torch.linspace(vals_to_bin.min(), vals_to_bin.max(), steps=tokenization_args.bins + 1)
binned_non_zero_vals = torch.bucketize(vals_to_bin, bin_edges)
binned_non_zero_vals = torch.clamp(binned_non_zero_vals, min=1)
binned_tensor = binned_non_zero_vals.float()
binned_vals.append(binned_tensor)
else:
binned_tensor = torch.zeros_like(vals_to_bin, dtype=torch.float)
binned_vals.append(binned_tensor)
return binned_vals
def _rank_continuous(vals, tokenization_args):
"""
Ranks gene expression values in the range [-1, 1].
"""
if isinstance(vals, np.ndarray):
vals = torch.tensor(vals)
if len(vals) > 0:
ranked_vals = torch.linspace(-1, 1, steps=len(vals)).flip(0)
else:
ranked_vals = vals
return ranked_vals
def _prepare_tokenizer_args(tokenization_args: Union[dict, TokenizationArgs]):
"""
Prepares and validates tokenization arguments, ensuring reproducibility
by setting random seeds if specified.
"""
if isinstance(tokenization_args, dict):
load_dir = tokenization_args["load_dir"]
save_dir = tokenization_args["save_dir"]
token_args_obj = TokenizationArgs(**tokenization_args)
else:
# It's already TokenizationArgs
load_dir = tokenization_args.load_dir
save_dir = tokenization_args.save_dir
token_args_obj = tokenization_args
# If a random seed is specified, set it for reproducibility
if token_args_obj.gene_seed is not None:
random.seed(token_args_obj.gene_seed)
np.random.seed(token_args_obj.gene_seed)
torch.manual_seed(token_args_obj.gene_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(token_args_obj.gene_seed)
return token_args_obj, load_dir, save_dir
def _check_genes_in_tokenizer(data: ad.AnnData, gene_id_column: str, tokenizer: GeneTokenizer):
"""
Checks if the genes in the dataset are present in the tokenizer's vocabulary.
"""
if gene_id_column == "index":
gene_index = data.var.index
else:
gene_index = data.var[gene_id_column]
# Check membership in vocab
gene_in_vocab = np.where([g in tokenizer.vocab for g in gene_index])[0]
coding_genes = gene_index[gene_in_vocab]
ratio = len(gene_in_vocab) / len(data.var)
if ratio < 0.1:
raise OSError(
f"Only {ratio:.2%} of gene IDs found in tokenizer vocab. " "Check gene_id_column or vocab mismatch."
)
return gene_in_vocab, coding_genes, ratio
def _build_batch_tensors(X_batch: torch.Tensor, token_array: torch.Tensor, token_args, data=None, obs_indices=None):
"""
Build topk or random subsets for each row in X_batch (batch_size x num_genes).
Return gene_list, vals_list, labels_list.
"""
batch_size = X_batch.shape[0]
seq_tokens = token_args.max_seq_len - 1 if token_args.add_cls else token_args.max_seq_len
# If random_genes => pick random subset then topk that subset
if token_args.random_genes:
random_indices = torch.stack([torch.randperm(X_batch.shape[1])[:seq_tokens] for _ in range(batch_size)])
random_vals = torch.gather(X_batch, 1, random_indices)
top_vals, rel_indices = torch.topk(
random_vals, k=min(seq_tokens, random_vals.shape[1]), largest=True, sorted=True
)
# Convert rel_indices => absolute indices
top_indices = torch.gather(random_indices, 1, rel_indices)
else:
# normal topk
top_vals, top_indices = torch.topk(X_batch, k=min(seq_tokens, X_batch.shape[1]), largest=True, sorted=True)
gene_ids = token_array[top_indices]
# If add_cls => prepend a CLS token
if token_args.add_cls:
cls_col = torch.tensor(token_args.cls_token_id).repeat(batch_size, 1)
gene_ids = torch.cat([cls_col, gene_ids], dim=1)
ones_col = torch.ones(batch_size, 1, dtype=top_vals.dtype)
top_vals = torch.cat([ones_col, top_vals], dim=1)
labels_list = None
return gene_ids, top_vals, labels_list, None
###############################################################################
# Main tokenize function
###############################################################################
def tokenize(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
"""
Tokenizes gene expression data stored in AnnData format.
Args:
data_path (str): Path to the AnnData file containing preprocessed gene expression data.
metadata_path (str): Path to the metadata file in JSON format.
tokenization_args (Union[dict, TokenizationArgs]): Configuration for tokenization.
"""
token_args, load_dir, save_dir = _prepare_tokenizer_args(tokenization_args)
# 1) Load GeneTokenizer
tokenizer = GeneTokenizer.from_pretrained(token_args.tokenizer_name_or_path)
if token_args.cls_token_id is None:
token_args.cls_token_id = tokenizer.cls_token_id
# 2) Load AnnData
data = ad.read_h5ad(data_path)
if "processed" not in data.layers:
raise ValueError(f"Missing 'processed' layer in {data_path}")
# 3) Genes in vocab
gene_in_vocab, coding_genes, ratio = _check_genes_in_tokenizer(data, token_args.gene_id_column, tokenizer)
print(f"{ratio:.2%} of genes found in tokenizer vocab")
# 5) Build token array for these genes
token_array = torch.tensor(tokenizer.encode(coding_genes.tolist(), add_special_tokens=False))
# 6) Convert processed layer to dense
X_matrix = data.layers["processed"].toarray()
# 7) Prepare final dictionary => HF Dataset
all_data = {"gene_ids": [], "values": []}
BATCH_SIZE = 512
n_obs = data.shape[0]
for start_idx in tqdm(range(0, n_obs, BATCH_SIZE), desc="Tokenizing in batches"):
end_idx = min(start_idx + BATCH_SIZE, n_obs)
obs_indices = np.arange(start_idx, end_idx)
X_batch = torch.tensor(X_matrix[obs_indices, :][:, gene_in_vocab], dtype=torch.float)
gene_ids_batch, vals_batch, labels_batch, decoder_vals_batch = _build_batch_tensors(
X_batch,
token_array,
token_args,
data=None,
obs_indices=None,
)
final_gene_list = []
final_vals_list = []
final_labels_list = []
if "decoder_values" in data.layers:
final_decoder_vals_list = []
# Filter out zero if needed
# or keep them
for row_idx in range(len(gene_ids_batch)):
g_row = gene_ids_batch[row_idx]
v_row = vals_batch[row_idx]
if labels_batch is not None:
lb_row = labels_batch[row_idx]
else:
lb_row = None
if decoder_vals_batch is not None:
dec_v_row = decoder_vals_batch[row_idx]
else:
dec_v_row = None
if not token_args.include_zero_genes:
nonzero_mask = v_row != 0
g_row = g_row[nonzero_mask]
v_row = v_row[nonzero_mask]
if lb_row is not None:
lb_row = lb_row[nonzero_mask]
if dec_v_row is not None:
dec_v_row = dec_v_row[nonzero_mask]
final_gene_list.append(g_row)
final_vals_list.append(v_row)
final_labels_list.append(lb_row)
if "decoder_values" in data.layers:
final_decoder_vals_list.append(dec_v_row)
# If we do binning or rank => apply them
if token_args.bins and token_args.continuous_rank:
raise ValueError("Should not use bins and continuous_rank simultaneously.")
if token_args.bins:
# possibly do no_sorting if we are binning "labels"
# we only do "no_sorting=True" for labels, but let's keep it simple for now
final_vals_list = _bin_values(final_vals_list, token_args, no_sorting=False)
elif token_args.continuous_rank:
for i, vals in enumerate(final_vals_list):
final_vals_list[i] = _rank_continuous(vals, token_args)
# Add to all_data
for row_idx in range(len(final_gene_list)):
all_data["gene_ids"].append(final_gene_list[row_idx].tolist())
all_data["values"].append(final_vals_list[row_idx].tolist())
if token_args.label_column:
all_data["labels"] = data.obs[token_args.label_column].cat.codes.values.tolist()
# bio_annotations
if token_args.bio_annotations:
with open(token_args.disease_mapping) as f:
disease_mapping = json.load(f)
with open(token_args.tissue_mapping) as f:
tissue_mapping = json.load(f)
with open(token_args.cell_mapping) as f:
cell_mapping = json.load(f)
with open(token_args.sex_mapping) as f:
sex_mapping = json.load(f)
if "disease" not in data.obs.columns:
data.obs["disease"] = "normal"
if "tissue" not in data.obs.columns:
data.obs["tissue"] = "cultured cell"
if "sex" not in data.obs.columns:
data.obs["sex"] = "unknown"
if "cell_type" not in data.obs.columns:
data.obs["cell_type"] = "unknown"
mapped_diseases = [disease_mapping[k] for k in data.obs["disease"].tolist()]
mapped_tissues = [tissue_mapping[k] for k in data.obs["tissue"].tolist()]
mapped_cell_types = [cell_mapping[k] for k in data.obs["cell_type"].tolist()]
mapped_sexes = [sex_mapping[k] for k in data.obs["sex"].tolist()]
all_data["disease"] = tokenizer.encode(mapped_diseases, add_special_tokens=False)
all_data["tissue"] = tokenizer.encode(mapped_tissues, add_special_tokens=False)
all_data["cell_type"] = tokenizer.encode(mapped_cell_types, add_special_tokens=False)
all_data["sex"] = tokenizer.encode(mapped_sexes, add_special_tokens=False)
if token_args.add_disease_annotation:
# We override "labels" with "disease" tokens
all_data["labels"] = all_data["disease"]
del data
gc.collect()
dataset = Dataset.from_dict(all_data)
num_samples = len(dataset)
if token_args.max_shard_samples:
num_shards = num_samples // min(token_args.max_shard_samples, num_samples)
else:
num_shards = 1
# Compute the path of data_path relative to load_dir
relative_data_path = os.path.relpath(data_path, load_dir)
relative_metadata_path = os.path.relpath(metadata_path, load_dir)
# Remove the ".h5ad" extension from data_path if desired
no_extension_data_path = os.path.splitext(relative_data_path)[0]
# Reconstruct the final paths under save_dir
save_tokenized_data_path = os.path.join(save_dir, no_extension_data_path)
save_metadata_path = os.path.join(save_dir, relative_metadata_path)
dataset.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
shutil.copy(metadata_path, save_metadata_path)
###############################################################################
# A simple shard function
###############################################################################
def shard_hf_dataset(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
"""
Shards a Hugging Face Dataset into smaller chunks for efficient storage and processing.
"""
if isinstance(tokenization_args, dict):
load_dir = tokenization_args["load_dir"]
save_dir = tokenization_args["save_dir"]
token_args_obj = TokenizationArgs(**tokenization_args)
else:
load_dir = tokenization_args.load_dir
save_dir = tokenization_args.save_dir
token_args_obj = tokenization_args
all_data = load_from_disk(data_path)
num_samples = len(all_data)
if token_args_obj.max_shard_samples:
num_shards = num_samples // min(token_args_obj.max_shard_samples, num_samples)
else:
num_shards = 1
save_tokenized_data_path = data_path.replace(load_dir, save_dir)
save_metadata_path = metadata_path.replace(load_dir, save_dir)
all_data.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
shutil.copy(metadata_path, save_metadata_path)
###############################################################################
# Main block
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser(description="Tokenize an AnnData file for downstream ML tasks.")
parser.add_argument(
"--data_path",
type=str,
required=True,
help="Path to the .h5ad file containing the preprocessed scRNA-seq data."
)
parser.add_argument(
"--metadata_path",
type=str,
required=True,
help="Path to the JSON file containing metadata."
)
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Path to the JSON file specifying tokenization hyperparameters."
)
args = parser.parse_args()
# Load tokenization arguments from JSON
with open(args.config_path, "r") as f:
tokenization_args = json.load(f)
# Call the tokenize function
tokenize(
data_path=args.data_path,
metadata_path=args.metadata_path,
tokenization_args=tokenization_args
)
|