File size: 1,939 Bytes
2414334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr1e-4_at1_da1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-base-pretrained_lr1e-4_at1_da1

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1479
- Wer: 1.0644

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 18.0956       | 6.1   | 250  | 4.6463          | 1.0    |
| 3.3157        | 12.2  | 500  | 3.7016          | 1.0    |
| 3.0923        | 18.29 | 750  | 3.9545          | 1.0    |
| 1.5621        | 24.39 | 1000 | 4.1576          | 1.0610 |
| 0.145         | 30.49 | 1250 | 4.6917          | 1.0503 |
| 0.0861        | 36.59 | 1500 | 5.4079          | 1.0635 |
| 0.0553        | 42.68 | 1750 | 5.8676          | 1.0601 |
| 0.0393        | 48.78 | 2000 | 6.3465          | 1.0618 |
| 0.0308        | 54.88 | 2250 | 6.1479          | 1.0644 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1