File size: 2,183 Bytes
114f96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- tr
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: base Turkish Whisper (bTW)
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base Turkish Whisper (bTW)

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5006
- Wer: 1.3698
- Cer: 1.1255

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.8141        | 5.53  | 100  | 1.4784          | 0.7680 | 0.4463 |
| 0.673         | 11.11 | 200  | 1.0561          | 0.8175 | 0.5889 |
| 0.2762        | 16.64 | 300  | 1.0746          | 0.8564 | 0.5887 |
| 0.0852        | 22.21 | 400  | 1.2061          | 1.4290 | 0.9567 |
| 0.0199        | 27.75 | 500  | 1.2649          | 1.0706 | 0.9168 |
| 0.0087        | 33.32 | 600  | 1.4641          | 1.2417 | 1.0328 |
| 0.0041        | 38.85 | 700  | 1.4685          | 1.2806 | 0.9546 |
| 0.003         | 44.43 | 800  | 1.4830          | 1.3633 | 1.0236 |
| 0.0026        | 49.96 | 900  | 1.4964          | 1.3698 | 1.0375 |
| 0.0025        | 55.53 | 1000 | 1.5006          | 1.3698 | 1.1255 |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2