metadata
language:
- tr
- en
- es
license: apache-2.0
library_name: transformers
tags:
- Generative AI
- text-generation-inference
- text-generation
- peft
- unsloth
Model Trained By Meforgers
This model was trained by Meforgers for the futuristic projects.
Firstly
-If u want to use unsloth; For Pytorch 2.3.0: Use the "ampere" path for newer RTX 30xx GPUs or higher.
pip install "unsloth[cu118-torch230] @ git+https://github.com/unslothai/unsloth.git" pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git" pip install "unsloth[cu118-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git" pip install "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
-Also you can use another system
Usage
from unsloth import FastLanguageModel import torch # Variable side max_seq_length = 512 dtype = torch.float16 load_in_4bit = True # Alpaca prompt alpaca_prompt = """### Instruction: {0} ### Input: {1} ### Response: {2} """ model, tokenizer = FastLanguageModel.from_pretrained( model_name="Meforgers/Aixr", max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, ) FastLanguageModel.for_inference(model) inputs = tokenizer( [ alpaca_prompt.format( "Can u text me basic python code?", # instruction side (You need to change that side) "", # input "", # output - leave this blank for generation! ) ], return_tensors="pt" ).to("cuda") outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True) print(tokenizer.batch_decode(outputs))