vaibhavad commited on
Commit
ebdd7e4
·
verified ·
1 Parent(s): b496eed

Create modeling_mistral_encoder.py

Browse files
Files changed (1) hide show
  1. modeling_mistral_encoder.py +277 -0
modeling_mistral_encoder.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+ import torch
3
+ import torch.multiprocessing as mp
4
+
5
+ from transformers import MistralModel, MistralPreTrainedModel, MistralConfig
6
+ from transformers.modeling_outputs import BaseModelOutputWithPast
7
+ from transformers.cache_utils import Cache, DynamicCache
8
+ from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralRMSNorm, MistralAttention, MistralFlashAttention2, MistralSdpaAttention, MistralMLP
9
+ from torch import Tensor, nn, device
10
+ from transformers.utils import logging
11
+
12
+ from .attn_mask_utils import _prepare_4d_causal_attention_mask
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+ def batch_to_device(batch, target_device: device):
17
+ """
18
+ send a pytorch batch to a device (CPU/GPU)
19
+ """
20
+ for key in batch:
21
+ if isinstance(batch[key], Tensor):
22
+ batch[key] = batch[key].to(target_device)
23
+ return batch
24
+
25
+ class ModifiedMistralAttention(MistralAttention):
26
+
27
+ def __init__(self, *args, **kwargs):
28
+ super().__init__(*args, **kwargs)
29
+ self.is_causal = False
30
+
31
+
32
+ class ModifiedMistralFlashAttention2(MistralFlashAttention2):
33
+
34
+ def __init__(self, *args, **kwargs):
35
+ super().__init__(*args, **kwargs)
36
+ self.is_causal = False
37
+
38
+
39
+ class ModifiedMistralSdpaAttention(MistralSdpaAttention):
40
+
41
+ def __init__(self, *args, **kwargs):
42
+ super().__init__(*args, **kwargs)
43
+ self.is_causal = False
44
+
45
+
46
+ MISTRAL_ATTENTION_CLASSES = {
47
+ "eager": ModifiedMistralAttention,
48
+ "flash_attention_2": ModifiedMistralFlashAttention2,
49
+ "sdpa": ModifiedMistralSdpaAttention,
50
+ }
51
+
52
+ class ModifiedMistralDecoderLayer(MistralDecoderLayer):
53
+ def __init__(self, config: MistralConfig, layer_idx: int):
54
+ nn.Module.__init__(self)
55
+ self.hidden_size = config.hidden_size
56
+
57
+ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
58
+
59
+ self.mlp = MistralMLP(config)
60
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
61
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
62
+
63
+
64
+ class MistralEncoderModel(MistralModel):
65
+ def __init__(self, config: MistralConfig):
66
+ MistralPreTrainedModel.__init__(self, config)
67
+ self.padding_idx = config.pad_token_id
68
+ self.vocab_size = config.vocab_size
69
+
70
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
71
+ self.layers = nn.ModuleList(
72
+ [ModifiedMistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
73
+ )
74
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
75
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
76
+
77
+ # sliding window is not supported for non-causal attention
78
+ if not self._use_flash_attention_2:
79
+ self.config.sliding_window = None
80
+
81
+ self.gradient_checkpointing = False
82
+ # Initialize weights and apply final processing
83
+ self.post_init()
84
+
85
+ def forward(
86
+ self,
87
+ input_ids: torch.LongTensor = None,
88
+ attention_mask: Optional[torch.Tensor] = None,
89
+ position_ids: Optional[torch.LongTensor] = None,
90
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
91
+ inputs_embeds: Optional[torch.FloatTensor] = None,
92
+ use_cache: Optional[bool] = None,
93
+ output_attentions: Optional[bool] = None,
94
+ output_hidden_states: Optional[bool] = None,
95
+ return_dict: Optional[bool] = None,
96
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
97
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
98
+ output_hidden_states = (
99
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
100
+ )
101
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
102
+
103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
+
105
+ # retrieve input_ids and inputs_embeds
106
+ if input_ids is not None and inputs_embeds is not None:
107
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
108
+ elif input_ids is not None:
109
+ batch_size, seq_length = input_ids.shape
110
+ elif inputs_embeds is not None:
111
+ batch_size, seq_length, _ = inputs_embeds.shape
112
+ else:
113
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
114
+
115
+ if self.gradient_checkpointing and self.training:
116
+ if use_cache:
117
+ logger.warning_once(
118
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
119
+ )
120
+ use_cache = False
121
+
122
+ past_key_values_length = 0
123
+
124
+ if use_cache:
125
+ use_legacy_cache = not isinstance(past_key_values, Cache)
126
+ if use_legacy_cache:
127
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
128
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
129
+
130
+ if position_ids is None:
131
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
132
+ position_ids = torch.arange(
133
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
134
+ )
135
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
136
+ else:
137
+ position_ids = position_ids.view(-1, seq_length).long()
138
+
139
+ if inputs_embeds is None:
140
+ inputs_embeds = self.embed_tokens(input_ids)
141
+
142
+ if attention_mask is not None and self._use_flash_attention_2 and use_cache:
143
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
144
+ if is_padding_right:
145
+ raise ValueError(
146
+ "You are attempting to perform batched generation with padding_side='right'"
147
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
148
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
149
+ )
150
+
151
+ if self._use_flash_attention_2:
152
+ # 2d mask is passed through the layers
153
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
154
+ else:
155
+ # 4d mask is passed through the layers
156
+ attention_mask = _prepare_4d_causal_attention_mask(
157
+ attention_mask,
158
+ (batch_size, seq_length),
159
+ inputs_embeds,
160
+ past_key_values_length,
161
+ sliding_window=self.config.sliding_window,
162
+ )
163
+
164
+ hidden_states = inputs_embeds
165
+
166
+ # decoder layers
167
+ all_hidden_states = () if output_hidden_states else None
168
+ all_self_attns = () if output_attentions else None
169
+ next_decoder_cache = None
170
+
171
+ for decoder_layer in self.layers:
172
+ if output_hidden_states:
173
+ all_hidden_states += (hidden_states,)
174
+
175
+ if self.gradient_checkpointing and self.training:
176
+ layer_outputs = self._gradient_checkpointing_func(
177
+ decoder_layer.__call__,
178
+ hidden_states,
179
+ attention_mask,
180
+ position_ids,
181
+ past_key_values,
182
+ output_attentions,
183
+ use_cache,
184
+ )
185
+ else:
186
+ layer_outputs = decoder_layer(
187
+ hidden_states,
188
+ attention_mask=attention_mask,
189
+ position_ids=position_ids,
190
+ past_key_value=past_key_values,
191
+ output_attentions=output_attentions,
192
+ use_cache=use_cache,
193
+ )
194
+
195
+ hidden_states = layer_outputs[0]
196
+
197
+ if use_cache:
198
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
199
+
200
+ if output_attentions:
201
+ all_self_attns += (layer_outputs[1],)
202
+
203
+ hidden_states = self.norm(hidden_states)
204
+
205
+ # add hidden states from the last decoder layer
206
+ if output_hidden_states:
207
+ all_hidden_states += (hidden_states,)
208
+
209
+ next_cache = None
210
+ if use_cache:
211
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
212
+
213
+ if not return_dict:
214
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
215
+ return BaseModelOutputWithPast(
216
+ last_hidden_state=hidden_states,
217
+ past_key_values=next_cache,
218
+ hidden_states=all_hidden_states,
219
+ attentions=all_self_attns,
220
+ )
221
+
222
+ def prepare_for_tokenization(self, text):
223
+
224
+ text = '[INST] ' + text.strip() + ' [/INST]'
225
+ # if self.pooling_mode == "eos_token":
226
+ # text = text.strip() + ' </s>'
227
+ return text
228
+
229
+ def tokenize(self, texts):
230
+ # return self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)
231
+
232
+ texts_2 = []
233
+ original_texts = []
234
+ for text in texts:
235
+ t = text.split("!@#$%^&*()")
236
+ texts_2.append(t[1])
237
+ original_texts.append("".join(t))
238
+
239
+ original = self.tokenizer(original_texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)
240
+ embed_mask = None
241
+ for t_i, t in enumerate(texts_2):
242
+ ids = self.tokenizer([t], return_tensors='pt', padding=True, truncation=True, max_length=self.max_length, add_special_tokens=False)
243
+ if embed_mask is None:
244
+ e_m = torch.zeros_like(original["attention_mask"][t_i])
245
+ if len(ids["input_ids"][0]) > 0:
246
+ e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
247
+ embed_mask = e_m.unsqueeze(0)
248
+ else:
249
+ e_m = torch.zeros_like(original["attention_mask"][t_i])
250
+ if len(ids["input_ids"][0]) > 0:
251
+ e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
252
+ embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
253
+
254
+ original["embed_mask"] = embed_mask
255
+ return original
256
+
257
+ def _skip_instruction(self, sentence_feature):
258
+ assert sentence_feature["attention_mask"].shape == sentence_feature["embed_mask"].shape
259
+ sentence_feature["attention_mask"] = sentence_feature["embed_mask"]
260
+
261
+ def _encode(self, sentences_batch, device, convert_to_numpy, multiprocessing=False):
262
+
263
+ if multiprocessing:
264
+ rank = mp.current_process()._identity[0]
265
+ if device is None and torch.cuda.is_available():
266
+ device = f"cuda:{rank % torch.cuda.device_count()}"
267
+
268
+ self.to(device)
269
+ features = self.tokenize([self.prepare_for_tokenization(sentence) for sentence in sentences_batch])
270
+ features = batch_to_device(features, device)
271
+
272
+ with torch.no_grad():
273
+ embeddings = self.forward(features)
274
+ embeddings = embeddings.detach()
275
+ embeddings = embeddings.cpu()
276
+
277
+ return embeddings