Sentence Similarity
Transformers
Safetensors
English
llama
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
text-generation-inference
Inference Endpoints
Create modeling_llama_encoder.py
Browse files- modeling_llama_encoder.py +200 -0
modeling_llama_encoder.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
from transformers import LlamaModel, LlamaPreTrainedModel
|
4 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm, LlamaConfig, LlamaMLP, LlamaAttention, LlamaFlashAttention2, LlamaSdpaAttention
|
5 |
+
from transformers.utils import logging
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
9 |
+
from transformers.cache_utils import Cache, DynamicCache
|
10 |
+
from .attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_attention_mask
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
class ModifiedLlamaAttention(LlamaAttention):
|
15 |
+
|
16 |
+
def __init__(self, *args, **kwargs):
|
17 |
+
super().__init__(*args, **kwargs)
|
18 |
+
self.is_causal = False
|
19 |
+
|
20 |
+
|
21 |
+
class ModifiedLlamaFlashAttention2(LlamaFlashAttention2):
|
22 |
+
|
23 |
+
def __init__(self, *args, **kwargs):
|
24 |
+
super().__init__(*args, **kwargs)
|
25 |
+
self.is_causal = False
|
26 |
+
|
27 |
+
|
28 |
+
class ModifiedLlamaSdpaAttention(LlamaSdpaAttention):
|
29 |
+
|
30 |
+
def __init__(self, *args, **kwargs):
|
31 |
+
super().__init__(*args, **kwargs)
|
32 |
+
self.is_causal = False
|
33 |
+
|
34 |
+
|
35 |
+
LLAMA_ATTENTION_CLASSES = {
|
36 |
+
"eager": ModifiedLlamaAttention,
|
37 |
+
"flash_attention_2": ModifiedLlamaFlashAttention2,
|
38 |
+
"sdpa": ModifiedLlamaSdpaAttention,
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
|
43 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
44 |
+
nn.Module.__init__(self)
|
45 |
+
self.hidden_size = config.hidden_size
|
46 |
+
|
47 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
48 |
+
|
49 |
+
self.mlp = LlamaMLP(config)
|
50 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
51 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
52 |
+
|
53 |
+
|
54 |
+
class LlamaEncoderModel(LlamaModel):
|
55 |
+
def __init__(self, config):
|
56 |
+
LlamaPreTrainedModel.__init__(self, config)
|
57 |
+
self.padding_idx = config.pad_token_id
|
58 |
+
self.vocab_size = config.vocab_size
|
59 |
+
|
60 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
61 |
+
self.layers = nn.ModuleList(
|
62 |
+
[ModifiedLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
63 |
+
)
|
64 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
65 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
66 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
67 |
+
|
68 |
+
self.gradient_checkpointing = False
|
69 |
+
# Initialize weights and apply final processing
|
70 |
+
self.post_init()
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
input_ids: torch.LongTensor = None,
|
75 |
+
attention_mask: Optional[torch.Tensor] = None,
|
76 |
+
position_ids: Optional[torch.LongTensor] = None,
|
77 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
78 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
79 |
+
use_cache: Optional[bool] = None,
|
80 |
+
output_attentions: Optional[bool] = None,
|
81 |
+
output_hidden_states: Optional[bool] = None,
|
82 |
+
return_dict: Optional[bool] = None,
|
83 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
84 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
85 |
+
output_hidden_states = (
|
86 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
87 |
+
)
|
88 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
89 |
+
|
90 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
91 |
+
|
92 |
+
# retrieve input_ids and inputs_embeds
|
93 |
+
if input_ids is not None and inputs_embeds is not None:
|
94 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
95 |
+
elif input_ids is not None:
|
96 |
+
batch_size, seq_length = input_ids.shape[:2]
|
97 |
+
elif inputs_embeds is not None:
|
98 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
99 |
+
else:
|
100 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
101 |
+
|
102 |
+
if self.gradient_checkpointing and self.training:
|
103 |
+
if use_cache:
|
104 |
+
logger.warning_once(
|
105 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
106 |
+
)
|
107 |
+
use_cache = False
|
108 |
+
|
109 |
+
past_key_values_length = 0
|
110 |
+
if use_cache:
|
111 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
112 |
+
if use_legacy_cache:
|
113 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
114 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
115 |
+
|
116 |
+
if position_ids is None:
|
117 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
118 |
+
position_ids = torch.arange(
|
119 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
120 |
+
)
|
121 |
+
position_ids = position_ids.unsqueeze(0)
|
122 |
+
|
123 |
+
if inputs_embeds is None:
|
124 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
125 |
+
|
126 |
+
if self._use_flash_attention_2:
|
127 |
+
# 2d mask is passed through the layers
|
128 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
129 |
+
elif self._use_sdpa and not output_attentions:
|
130 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
131 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
132 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
133 |
+
attention_mask,
|
134 |
+
(batch_size, seq_length),
|
135 |
+
inputs_embeds,
|
136 |
+
past_key_values_length,
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
# 4d mask is passed through the layers
|
140 |
+
attention_mask = _prepare_4d_attention_mask(
|
141 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
142 |
+
)
|
143 |
+
|
144 |
+
# embed positions
|
145 |
+
hidden_states = inputs_embeds
|
146 |
+
|
147 |
+
# decoder layers
|
148 |
+
all_hidden_states = () if output_hidden_states else None
|
149 |
+
all_self_attns = () if output_attentions else None
|
150 |
+
next_decoder_cache = None
|
151 |
+
|
152 |
+
for decoder_layer in self.layers:
|
153 |
+
if output_hidden_states:
|
154 |
+
all_hidden_states += (hidden_states,)
|
155 |
+
|
156 |
+
if self.gradient_checkpointing and self.training:
|
157 |
+
layer_outputs = self._gradient_checkpointing_func(
|
158 |
+
decoder_layer.__call__,
|
159 |
+
hidden_states,
|
160 |
+
attention_mask,
|
161 |
+
position_ids,
|
162 |
+
past_key_values,
|
163 |
+
output_attentions,
|
164 |
+
use_cache,
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
layer_outputs = decoder_layer(
|
168 |
+
hidden_states,
|
169 |
+
attention_mask=attention_mask,
|
170 |
+
position_ids=position_ids,
|
171 |
+
past_key_value=past_key_values,
|
172 |
+
output_attentions=output_attentions,
|
173 |
+
use_cache=use_cache,
|
174 |
+
)
|
175 |
+
|
176 |
+
hidden_states = layer_outputs[0]
|
177 |
+
|
178 |
+
if use_cache:
|
179 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
180 |
+
|
181 |
+
if output_attentions:
|
182 |
+
all_self_attns += (layer_outputs[1],)
|
183 |
+
|
184 |
+
hidden_states = self.norm(hidden_states)
|
185 |
+
|
186 |
+
# add hidden states from the last decoder layer
|
187 |
+
if output_hidden_states:
|
188 |
+
all_hidden_states += (hidden_states,)
|
189 |
+
|
190 |
+
next_cache = None
|
191 |
+
if use_cache:
|
192 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
193 |
+
if not return_dict:
|
194 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
195 |
+
return BaseModelOutputWithPast(
|
196 |
+
last_hidden_state=hidden_states,
|
197 |
+
past_key_values=next_cache,
|
198 |
+
hidden_states=all_hidden_states,
|
199 |
+
attentions=all_self_attns,
|
200 |
+
)
|