File size: 4,542 Bytes
e6cdb46 baece6f e6cdb46 baece6f e6cdb46 baece6f e6cdb46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: twitter-roberta-base-sentiment-latest
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-sentiment-latest
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3202
- Accuracy: 0.7915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8113 | 0.12 | 30 | 0.7971 | 0.418 |
| 0.6733 | 0.24 | 60 | 0.6551 | 0.469 |
| 0.5712 | 0.36 | 90 | 0.5713 | 0.522 |
| 0.5234 | 0.48 | 120 | 0.5311 | 0.565 |
| 0.5406 | 0.6 | 150 | 0.4938 | 0.6595 |
| 0.4856 | 0.72 | 180 | 0.4482 | 0.692 |
| 0.4732 | 0.84 | 210 | 0.4147 | 0.7185 |
| 0.4217 | 0.96 | 240 | 0.4038 | 0.726 |
| 0.4097 | 1.08 | 270 | 0.3828 | 0.7375 |
| 0.3911 | 1.2 | 300 | 0.3928 | 0.735 |
| 0.3779 | 1.32 | 330 | 0.3767 | 0.7555 |
| 0.3829 | 1.44 | 360 | 0.3705 | 0.74 |
| 0.3596 | 1.56 | 390 | 0.3905 | 0.744 |
| 0.3626 | 1.68 | 420 | 0.3712 | 0.7425 |
| 0.3763 | 1.8 | 450 | 0.3679 | 0.752 |
| 0.3722 | 1.92 | 480 | 0.3353 | 0.7805 |
| 0.3387 | 2.04 | 510 | 0.3504 | 0.768 |
| 0.3247 | 2.16 | 540 | 0.3573 | 0.766 |
| 0.3242 | 2.28 | 570 | 0.3526 | 0.7775 |
| 0.4003 | 2.4 | 600 | 0.3413 | 0.7785 |
| 0.353 | 2.52 | 630 | 0.3519 | 0.765 |
| 0.3557 | 2.64 | 660 | 0.3421 | 0.7845 |
| 0.3013 | 2.76 | 690 | 0.3291 | 0.7855 |
| 0.3034 | 2.88 | 720 | 0.3306 | 0.779 |
| 0.3146 | 3.0 | 750 | 0.3554 | 0.767 |
| 0.2856 | 3.12 | 780 | 0.3333 | 0.7825 |
| 0.2764 | 3.24 | 810 | 0.3353 | 0.7795 |
| 0.2844 | 3.36 | 840 | 0.3202 | 0.7915 |
| 0.2531 | 3.48 | 870 | 0.3388 | 0.7815 |
| 0.3134 | 3.6 | 900 | 0.3497 | 0.7775 |
| 0.2874 | 3.72 | 930 | 0.3427 | 0.787 |
| 0.2822 | 3.84 | 960 | 0.3328 | 0.7805 |
| 0.2963 | 3.96 | 990 | 0.3375 | 0.7885 |
| 0.2014 | 4.08 | 1020 | 0.3579 | 0.787 |
| 0.2275 | 4.2 | 1050 | 0.3472 | 0.7905 |
| 0.2758 | 4.32 | 1080 | 0.3497 | 0.7915 |
| 0.2552 | 4.44 | 1110 | 0.3555 | 0.775 |
| 0.228 | 4.56 | 1140 | 0.3494 | 0.784 |
| 0.2471 | 4.68 | 1170 | 0.3451 | 0.787 |
| 0.2505 | 4.8 | 1200 | 0.3508 | 0.7825 |
| 0.2453 | 4.92 | 1230 | 0.3539 | 0.785 |
| 0.2296 | 5.04 | 1260 | 0.3505 | 0.791 |
| 0.2449 | 5.16 | 1290 | 0.3602 | 0.7835 |
| 0.2171 | 5.28 | 1320 | 0.3630 | 0.782 |
| 0.237 | 5.4 | 1350 | 0.3552 | 0.789 |
| 0.1885 | 5.52 | 1380 | 0.3730 | 0.7795 |
| 0.2428 | 5.64 | 1410 | 0.3547 | 0.7925 |
| 0.225 | 5.76 | 1440 | 0.3586 | 0.7835 |
| 0.2513 | 5.88 | 1470 | 0.3586 | 0.786 |
| 0.2241 | 6.0 | 1500 | 0.3580 | 0.787 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|