metadata
license: apache-2.0
library_name: transformers
tags:
- axolotl
- generated_from_trainer
- gemma
- 7b
- alpaca
- peft
- lora
- qlora
- openhermes
base_model: google/gemma-7b
model-index:
- name: gemma-7b-Open-Hermes-v0.1
results: []
datasets:
- teknium/openhermes
pipeline_tag: text-generation
See axolotl config
axolotl version: 0.4.0
# use google/gemma-7b if you have access
#base_model: mhenrichsen/gemma-7b
base_model: google/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: MaziyarPanahi/gemma-7b-Open-Hermes-v0.1
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: true
strict: false
# huggingface repo
datasets:
- path: teknium/openhermes
type: alpaca
val_set_size: 0.1
output_dir: ./qlora-gemma-7b-openhermes
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
gemma-7b-Open-Hermes-v0.1
This model is a fine-tuned version of google/gemma-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4456
How to use
PEFT
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"
config = PeftConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = PeftModel.from_pretrained(model, model_id)
Transformers
# Use a pipeline as a high-level helper
from transformers import pipeline
model_id = "MaziyarPanahi/gemma-7b-Open-Hermes-v0.1"
pipe = pipeline("text-generation", model=model_id)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 227
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3258 | 0.0 | 1 | 1.9697 |
0.63 | 0.25 | 2277 | 1.5227 |
0.642 | 0.5 | 4554 | 1.4835 |
0.7721 | 0.75 | 6831 | 1.4456 |
Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0